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ABSTRACT 

 

HMG-CoA reductase is an essential enzyme responsible for the biosynthesis of cholesterol. Hyperactivity of HMG-

CoA reductase will increase cholesterol production, leading to the elevation of blood cholesterol levels. Inhibition of 

HMG-CoA reductase is one way to block cholesterol biosynthesis to lower blood cholesterol levels. This study 

evaluated the inhibitory potential of iota-, kappa-, and lambda-carrageenan against HMG-CoA reductase. The study 

was undertaken in silico using a molecular docking approach via Autodock 4.2 assisted by ADT graphical user 

interface. HMG-CoA reductase co-crystal structure was used as the target, and iota-, kappa-, and lambda-

carrageenan as the test ligands. The result revealed that iota- and lambda-carrageenan possess an excellent affinity 

to HMG-CoA reductase with the free binding energy of -12.44 and -11.87 kcal/mol and Ki value of 0.765 and 2.01 

nM, respectively, which is found to be better than Simvastatin and the native ligand. The compounds' chemical 

properties influenced the molecules' molecular interactions affecting their affinity. The number of SO4 groups is 

assumed to affect the HMG-CoA reductase inhibitory activity of iota-, kappa-, and lambda-carrageenan.  
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INTRODUCTION 

Hypercholesterolemia is a metabolic 

disease by which the total cholesterol serum 

level increases above the standard (>200 

mg/dL) (Martinez-Hervas & Ascaso, 2019). 

The elevation of the total cholesterol serum is 

generally caused by various factors, 

including high cholesterol food intake and 

hyperactivity of 3-hydroxy-3methyl-

glutaryl-coenzyme A (HMG-CoA) reductase 

(Cha & Park, 2019; Haines et al., 2013). 

HMG-CoA reductase is an essential enzyme 

that has been recognized to contribute to 

cholesterol synthesis by catalyzing the 

conversion of HMG-CoA to mevalonate, the 

precursor of many isoprenoid products 

(DeBose-Boyd, 2008). Chronic 

hypercholesterolemia will cause 

atherosclerosis that clogs blood circulation 

leading to various cardiovascular-related 

diseases (Jellinger et al., 2017).  
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Several drugs have been developed and 

used to treat hypercholesterolemia by 

limiting the biosynthesis of cholesterol, one 

of which is through the inhibition of HMG-

CoA reductase (Bansal & Cassagnol, 2022). 

Many HMG-CoA reductase inhibitors, i.e., 

Simvastatin, atorvastatin, and rosuvastatin, 

have been widely used to lower the blood 

cholesterol level and have been pointed out 

as the primary prevention of coronary heart 

disease (Grundy et al., 2019). However, in 

spite of their evidence in lowering the total 

cholesterol serum level, various adverse 

effects have been reported, including muscle-

related problems (Koskinas et al., 2007), 

angioedema (Naz et al., 2018), and liver 

toxicity (Famularo et al., 2007). Therefore, 

this increases the need to discover new lipid-

lowering candidates working on inhibiting 

HMG-CoA reductase, which provides high 

efficacy and safety with minimum toxicity 

and side effects. 

      Carrageenan is one of the natural 

product compounds derived from marine 

algae that is widely used in pharmaceutical 

products as a stabilizer, gelling agent, 

thickener, and emulsifying agent (Amin et 

al., 2022; Lomolino et al., 2022; Rosmiati et 

al., 2018). Carrageenan presents in three 

major types, including iota, kappa, and 

lambda (Frediansyah, 2021), which provide 

spacious pharmacological properties such as 

antioxidant (Mani et al., 2021), antimicrobial 

(Júnior et al., 2021), immunomodulator 

(Cicinskas et al., 2020), and antiviral (Jang et 

al., 2021). Even though they possess various 

biological activities, there are no reports 

regarding the anti-hypercholesterolemia of 

carrageenan. Therefore, this is the 

preliminary report to evaluate the potential of 

carrageenan as an anti-hypercholesterolemia 

candidate through the inhibition of HMG-

CoA reductase using a molecular docking 

approach.  

MATERIAL AND METHODS  

Materials 

This study was implemented by in silico 

computational methods using a unit of ASUS 

X455LA personal computer equipped with 

10 GB of RAM, 256 GB of SSD, Intel® 

Core™ i3-4030U processor, 2 GB of Intel® 

HD Graphics VGA and Windows 10 Pro 64-

bit (10.0, Build 18362). The software used 

for the molecular docking-related study were 

Autodock 4.2, ADT graphical user interface, 

Biovia Discovery Studio, ChemDraw Pro 

12.0 and notepad++. 

Protein and ligand preparation 

HMG-CoA reductase was used as the 

macromolecule target with the x-ray 

diffraction computed structure model 

retrieved from the Protein Data Bank 

database (PDB ID: 1HW9) (Istvan & 

Deisenhofer, 2001). The choosing criteria of 

the macromolecule were applied, including 

resolution ( 2.5 Ǻ), method (x-ray 

diffraction), and mutations (nil). The 

macromolecule was processed in Biovia 

Discovery Studio to remove all unnecessary 
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properties, including water, heteroatoms, and 

ligands. On the other hand, the iota-, kappa-, 

and lambda-carrageenan two-dimensional 

structure was first drawn using ChemDraw 

Ultra 12.0 (Figure 1) and covert to the 3D 

structure using Chem3D Pro 12.0 and saved 

in PDB format. The 3D structure was then 

further processed in ADT graphical user 

interface by adding the hydrogen atoms and 

Kollman charge.      

Molecular docking study 

   A molecular docking study was carried 

out as described by Reynaldi & Setiawansyah 

(2022) using Autodock 4.2 provided by The 

Scripps Research Institute, assisted by ADT 

graphical user interface. The grid box 

parameters, including dimension (40 x 40 x 

40), spacing (0.375 Ǻ), and x, y, and z-axis, 

were set following the native ligand as the 

active site (figure 2). The docking process 

was set as a flexible ligand with a rigid 

macromolecule and used a Genetic 

Algorithm (100 runs) as the parameter and a 

Lamarckian Genetic Algorithm as an output. 

The study repeated at least five replications.   

RESULTS AND DISCUSSION 

The initial step in this study was validating 

the docking methods to ensure that all 

docking parameters meet the criteria for the 

docking process of the test ligands. The 

critical point for validating the docking 

method was the root mean square deviation 

(RMSD) value obtained from the re-docking 

process of the native ligands. The RMSD 

value provides information regarding the 

similarity of structure conformation of the re-

docking ligand with the original native 

ligand. The lower the RMSD value (getting 

closer to zero), the more similar the structure 

conformation between the re-docking ligand 

and the original native ligand (Aziz et al., 

2020). The RMSD value obtained from the 

re-docking ligand in this study was 1.59 Ǻ. 

Morris et al. (2009) stated that the acceptable 

RMSD value for the validation process 

should be  2.0 Ǻ. Therefore, the docking 

parameters in this study were stated as valid. 

The validated parameters were further 

used for the docking study of the test ligands 

 

Figure 1. Structure of iota-, kappa-, and lambda-

carrageenan 
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Figure 2. Overlay structure of original native ligand 

(green) and re-docking ligand (blue)  
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(iota-, kappa-, and lambda-carrageenan). The 

assessment of ligands' inhibitory activity 

against HMG-CoA reductase was justified by 

distinguishing their binding energy. As 

illustrated in Figure 3, iota-, kappa-, and 

lambda-carrageenan possess smaller binding 

energy than Simvastatin as the positive 

control. However, only iota- and lambda-

carrageenan have smaller than the native 

ligands. Several studies reported that ligands 

with smaller binding energy than the native 

ligand or the positive control are predicted to 

have a better affinity than the native ligand or 

the positive control (Muttaqin et al., 2020). 

The binding strength will be stronger when 

the binding energy gets smaller. It has 

therefore been recognized that iota- and 

lambda-carrageenan have an excellent 

affinity with HMG-CoA reductase. 

Another parameter in assessing the 

ligands' affinity is justifying their inhibition 

constant (Ki). The Ki is essential to evaluate 

molecules' inhibitory activity (iota-, kappa-, 

and lambda-carrageenan) against HMG-CoA 

reductase. As described in Table 1, it can be 

seen that iota- and lambda-carrageenan 

provide a smaller inhibition constant (Ki) 

compared to Simvastatin as well as the native 

ligand. It indicates that iota- and lambda-

carrageenan have an excellent affinity with 

HMG-CoA reductase. The Ki value is 

proportional to the free binding energy. The 

lower the Ki value is, the smaller the free 

binding energy of the molecules (Brooks et 

al., 2009; Setiawansyah & Gemantari, 2022).  

The affinity of iota-, kappa-, and lambda-

carrageenan are directly influenced by their 

molecular interaction with amino acid 

 

Figure 3. the free binding energy of iota-, kappa-, and lambda-carrageenan against HMG-CoA reductase 
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Table 1. Estimated inhibition constant (Ki) of iota-, 

kappa-, and lambda-carrageenan against HMG-CoA 

reductase 

Ligands 
Inhibition Constant 

(Ki) (nM) 

Iota-carrageenan 0.765 

Kappa-carrageenan 323.70 

Lambda-carrageenan 2.01 

Simvastatin 1160 

Native ligand 118.58 
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residues in the active site of HMG-CoA 

reductase. The diversity of interactions with 

the amino acid residues will lead to the 

difference in the affinity of the iota-, kappa-, 

and lambda-carrageenan. Figures 4 and 5 

illustrate that iota, kappa, and lambda-

carrageenan interact with different amino 

acid residues. This is the primary cause of the 

affinity of each compound varying 

significantly.   

Iota-, kappa-, and lambda-carrageenan 

have similarities in structure. However, the 

number of sulfates (SO4) group is different, 

affecting the molecule's affinity against 

HMG-CoA reductase due to the molecular 

interactions. As shown in Figure 5d, the 

native ligand interacts with several amino 

acid residues in HMG-CoA reductase 

binding pocket, such as Ser 661, Arg 590, Ser 

684, Lys 735, Lys 692, Ala 751, Asp 690, 

Asn 755, Lys 691 and Leu 853. These amino 

acid residues are recognized as the critical 

factor in promoting the inhibitory activity of 

the ligand. Interacting with these amino acid 

residues will allow a molecule to be well-

bound with the HMG-CoA reductase. There 

are some differences in the types of 

interaction from iota-, kappa-, and lambda-

carrageenan with the native ligand. The 

native ligand interacts with the essential 

amino acid residues via hydrogen bond and 

pi interaction, whereas iota-, kappa-, and 

lambda-carrageenan interact via a hydrogen 

bond and interact via salt-bridge interactions. 

Therefore, the number of SO4 groups directly 

influences the affinity of iota-, kappa-, and 

lambda-carrageenan. As illustrated in Figure 

5a-c, the SO4 group is responsible for 

forming hydrogen bonds and salt-bridge. 

Iota-carrageenan has four SO4 groups that 

provide three salt-bridge with one negative-

negative and acceptor-acceptor interaction, 

while lambda-carrageenan possesses three 

SO4 groups which provide five salt-bridge. 

On the other hand, kappa-carrageenan only 

has two SO4 groups, which only provide 

three salt-bridge. The more SO4 group in the 

molecule's structure, the more salt-bridge 

 

Figure 4. 3D molecular interaction of (a) iota-, (b) kappa-, and (c) lambda-carrageenan with HMG-CoA reductase 

amino acid residues 

 

    

 

 

 

 

(a) (b) (c) 



Ad-Dawaa’ J. Pharm. Sci. 5 (2) 

99 

formation occurred. It is indicated that the 

salt-bridge formation significantly 

contributes to the affinity of iota-, kappa-, 

and lambda-carrageenan against HMG-CoA 

reductase. The complete molecular 

interaction of iota-, kappa-, and lambda-

carrageenan is summarized in Table 2.  

CONCLUSION 

Iota-, kappa-, and lambda-carrageenan 

have been tested for their potential to inhibit 

HMG-CoA reductase using a molecular 

docking approach. The number of SO4 

groups in the structure of iota-, kappa-, and 

lambda-carrageenan is recognized as the 

primary cause of their affinity distinction due 

to the salt-bridge formation. Among those 

compounds, iota- and lambda-carrageenan 

have lower binding affinity and Ki than 

Simvastatin and the native ligand. It indicates 

that iota- and lambda-carrageenan are 

potentially developed as HMG-CoA 

 

Figure 5. 2D interaction of (a) iota-, (b) kappa-, (c) lambda-carrageenan, and (d) native ligand with HMG-CoA 

reductase amino acid residues 
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reductase inhibitors. However, further 

investigations are needed to evaluate their 

potential.     
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