

Ad-Dawaa' Journal of Pharmaceutical Sciences ISSN: 2654-7392, E-ISSN: 2654-6973 Vol. 5, No. 2 December 2022, Hal. 64-68 DOI: <u>https://doi.org/10.24252/djps.v5i2.37548</u>

Docking Molecular Study, Pharmacokinetics Profile and Toxicity Prediction of Basil Plant (*Ocimum basillicum*) Compounds as Isositrate Dehydrogenase Inhibitior

Fitril Imani¹, Yusnita Rifai¹, Herlina Rante¹, Ansari Masri², Andri Anugerah Pratama³, Musabbiha³

¹ Departement of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar ² Departement of Pharmacy, Faculty of Medicine and Health Scinence, Muhammadiyah University of Makassar ³ Departement of Pharmacy, Faculty of Medicine and Health Scinence, Alauddin Islamic State University of Makassar

*Corresponding author e-mail: fitrilimani@gmail.com

ABSTRACT

This study aims to predict the compounds from Ocimum basillicum that have potential as enzyme isocitrate dehydrogenase (IDH) inhibitors. Forty-two compounds from Ocimum basillicum were carried out by molecular docking to the IDH enzyme using the AutodockTools 1.5.7 program and continued prediction of pharmacokinetic profile and toxicity using ADMETab 2.0 and Toxtree. The validation of the molecular docking method showed an RMSD value of 1.3752 A. As a result of the research, we discovered several compounds had the best interactions in our investigation. Those compounds were Apigenin, Catechin, Chloronergic Acid, Ellagic Acid, Quercetin, Rosmarinic Acid, Rutin, Eriodictyol, and Chicoric Acid, with binding affinity values of -7.5, -7.2, -7.6, -7.9, -8.0, -7.6, -7.9, and -7.1, respectively. Several compounds are predicted to have the potential to be developed as IDH inhibitors. Furthermore, the ADMET's predictions show that these potential compounds still require improvement in pharmacokinetics and toxicity. However, further laboratory investigations like in vitro and in vivo assays need to be conducted.

KEYWORDS: Molecular Dcking, Ocimum basillicum, Isositrate Dehidrogenase, Cancer.

INTRODUCTION

The enzyme isocitrate dehydrogenase (IDH) is an important enzyme that participates in several metabolic processes, such as the Krebs cycle, glutamine metabolism, regulation of lipogenesis, and redox. IDH1 is in the cytoplasm and peroxisomes (S. Han et al., 2020). In humans, IDH enzymes catalyze the conversion of isocitrate to α -ketoglutarate (α -KG), an intermediate in the citric acid cycle. Specific mutations in the genes encoding IDHs cause neomorphic enzymatic activity that produces D-2-hydroxyglutarate (2-HG) and inhibits α -KG-dependent enzymes such as histone and DNA demethylases. Therefore, IDH mutations result in hypermethylated DNA and histone profile, which is considered to be among the major mechanisms behind tumorigenesis (Kayabolen et al., 2021)

Mutations in IDH are prevalent in human malignancies. IDH mutations also occur in myeloid leukemia acute (AML), myelodysplastic syndrome (MSD), myeloproliferative neoplasms (MPN), cholangiocarcinoma, enchondroma and chondrosarcoma, and other types of cancer. In the integrated genomic analysis of human glioblastoma (GBM), IDH mutations were observed in 12% of GBM samples. They were predominantly in tumors developed from low-grade gliomas (secondary GBM). Furthermore, >70% of WHO grade II/III gliomas were found to have IDH mutations (C. H. Han & Batchelor, 2017) It has become clear that IDH mutations are associated with many epigenetic and metabolic changes in these tumors.

Surgery, radiotherapy, and chemotherapy are used in various clinical treatments for tumors and cancer patients (Yi et al., 2013). Chemotherapy is routinely used in cancer treatment because it can kill more cancer cells in a shorter period of time. However, this also causes a variety of toxicities that can affect therapy results. Long-term use can cause normal cells to lose functionality and make cancer cells susceptible to this treatment (Desai et al., 2008). Alternative medical therapy is the best solution by searching for new molecules that come from nature and can act against cancer cells without having side effects that can cause toxicity (Wisbeck et al., 2020) *Ocimum basillicum* is an essential oil that has been used in traditional medicine to treat various diseases and provides a good source of bioactive compounds for cancer prevention and treatment (Perna et al., 2022)

By designing and modifying drugs based on ligands (ligand-based drug design), which will predict the bonds affinity of various active compounds to establish biological activity relationships, molecular docking is in the form of a computational simulation that enables drug development to be carried out efficiently and effectively (Ziemska et al., 2020) and also the fastest way to identify drug candidates and their targets (Deshpande et al., 2020) Therefore, molecular docking plays an important role in terms of rational drug design (Nursamsiar et al., 2016)

Despite this. no research has investigated Ocimum basillicum compounds that are chemically and pharmacologically active as IDH inhibitors. Therefore, this study was carried out to predict the bioactive compounds from Ocimum basillicum that have the potential to be IDH inhibitors by molecular docking and prediction of pharmacokinetic profile and toxicity.

MATERIAL AND METHODS

Material and Instrument

The instrument used is a set of portable computers. The software used is the program package Notepad++, Autodock Tools 1.7.5, and the Biovia Discovery Studio Visualizer 2021 program used in the molecular docking process. Prediction of Pharmacokinetics profile and toxicity using ADMETab 2.0 (https://admetmesh.scbdd.com/)

Methods

Ligand Preparation

The test compounds used for molecular docking were obtained according to (Avetisyan et al., 2017), (Fitsiou et al., 2016), (Dris et al., 2017), (Antonescu et al., 2021), (Aminian et al., 2022), (Hikmawanti et al., 2019), (Rezzoug et al., 2019), (Zarlaha et al., 2014), and (Kayabolen et al., 2021). Vorasidenib as the positive control and 42 bioactive compounds from Ocimum *basillicum* that have anticancer activity were selected for use in this study. The 3D conformations of all the ligan compounds downloaded from were PubChem(https://pubchem.ncbi.nlm.nih.gov). The optimized three-dimensional structure using the Autodock Tools program by setting the rotatable bond. As for the native ligand used, AKG is a natural ligand from the 4L03 protein.

Enzyme Preparation

The IDH enzyme was downloaded fromtheRSCB.PDBwebsite

(https://www.rcsb.org) with PDB ID 4L03 in *.Sdv/* 3D format with its natural ligand is AKG (2-Oxoglutaric Acid). The protein separated from all other components in the protein complex (protein molecules, other small molecules, ions, and water). The enzyme loaded with a Kollman Charge and will automaticly be saved.

Docking Molecular

The molecular docking was carried out using AutoDock Vina software assisted by AutoDockTools. The enzyme's active site was determined following the AKG ligand binding site with the enzyme. Molecular docking parameters were used according to the default value. The coordinate of the grid box and adjustment by X = -29,823, Y = -37,579, Z = 16,44 with a spacing of 0.375A. The molecular docking method is valid if the RMSD value obtained from the re-docking of the native ligand is less than 2 Å (Prasetiawati et al., 2021). Furthermore, the visualization results can be seen using the Biovia Discovery Studio Visualizer by docking between the enzyme and ligand. Visualization can be analyzed based on the interaction of amino acids with the enzymes Pharmacokinetics Profil and *Toxicity* Prediction

This prediction was performed using the ADMETlab 2.0 network-lined instrument (https://admetmesh.scbdd.com) from Computational Biology. Testing is done by uploading the ligands of the *Ocimum basillicum* compounds in *smile format

RESULTS AND DISCUSSION

Validation of Doking Method

Figure 1. IDH Receptor (A), AKG Natural Ligand (B)

IDH enzyme the Figure one, is crystallography structure of cytosolic enzyme Isocitrate Dehydrogenase (IDH1) complexed with NADP+ and Ca2+alpha. The first step in molecular docking is a validation of the docking method. This validation method begins with ligand and enzyme preparation by removing the other components in the enzyme complex (enzyme molecules, other small molecules, ions, and water). The addition of Kollman charges to

the target provide a charge on the amino acid residue in the form of electrostatic potential energy based on quantum mechanical calculations(Kolina et al., 2019). An RMSD value 1.3752 A was obtained after 10 times redocking the 4L03 protein with the AKG ligand. These results showed that the docking method is valid. A separation was carried out between the target protein and the natural ligand to validate the docking method, as seen in Figure 1.

Bonding Energy (ΔG)

Figure 2. Ligand AKG(Yellow) and Redocking Ligand AKG(Red)

In order to get the docking results, the bond free energy (ΔG) score of the tested compound, enzyme complexes and the RMSD value were obtained. Bond-free energy indicates affinity between the ligand and the enzyme (Pantsar & Poso, 2018). Low affinity indicates that the ligand and the enzyme require low binding energy. Thus, the lower ΔG score, the stronger and more stable the bond between the ligand and the enzyme (Syahputra et al., 2014). In addition, the analysis was also observing the interactions that occur between ligands and amino acid residues in enzyme. The ΔG score of the test compound's native ligand and positive control can be seen in Table 1.

The AKG show ΔG score -5,3 while positive control Vorasidenib -6,8. Meanwhile, out of the 42 test compounds have a different binding affinity of each ligand, several compounds had the lowest affinity values compared to the native ligand and the positive control : Apigenin, Catechin, Chologenic acid, Ellagic acid, Quercetin, Rosmarinic acid, Rutin, Eriodictyol, and chicoric acid with ΔG score is -7.5, -7.2, -7.6, -7.9, -8.0, -7.1, -7.9, -7.6, and -7.1 respectively. Veridiflorol and Ferulic acid has the same energy as the native ligand.

The result shows that the test compound with the lowest ΔG are Quarcetin, Rutin, and Ellagic acid in table 1.

NO	COMPOUNDS	ΔG	NO	COMPOUNDS	ΔG
1	Vorasidenib (C ¹⁴ H ¹³ ClF ⁶ N ⁶)	-6,8	23	Eugenol $(C^{10}H^{12}O^2)$	-4,7
2	AKG (Native Ligand)	-5,3	24	Geranyl Acetate $(C^{12}H^{20}O^2)$	-4,8
3	Mycrene (C ¹⁰ H ¹⁶)	-3,6	25	Cinnamic Acid (C ⁹ H ⁸ O ²)	-4,8
4	Camphene $(C^{10}H^{16})$	-3,8	26	Caryophyllene (C ¹⁵ H ²⁴)	-4,8
5	Sabinene (C ¹⁰ H ¹⁶)	-3,8	27	Methyl Cinnamate $(C^{10}H^{10}O^2)$	-4,9
6	Linalool (C ¹⁰ H ¹⁸ O)	-3,9	28	Germacrane D (C ¹⁵ H ³⁰)	-5,1
7	Citronellol (C ¹⁰ H ²⁰ O)	-4,0	29	Aromadendrene (C ¹⁵ H ²⁴)	-5,2
8	Methyl Heptenone (C ⁸ H ¹⁴ O)	-4,0	30	Cadinol (C ¹⁵ H ²⁶ O)	-5,2
9	Palmitic Acid (C ¹⁶ H ³² O ²)	-4,1	31	Viridiflorol (C ¹⁵ H ²⁶ O)	-5,3
10	Citral (C ¹⁰ H ¹⁶ O)	-4,1	32	Ferulic Acid (C ¹⁰ H ¹⁰ O ⁴)	-5,3
11	Chavicol (C ⁹ H ¹⁰ O)	-4,2	33	Terpenyl Acetate (C ¹² H ²⁰ O ³)	-5,5
12	Geraniol (C ¹⁰ H ¹⁸ O)	-4,2	34	Caffeic Acid (C ⁹ H ⁸ O ⁴)	-5,7
13	Methyl Cavicol (C ¹⁰ H ¹² O)	-4,2	35	Gallic Acid (C ⁷ H ⁶ O ⁵)	-6,0
14	Cyclopentylaceto ne (C ⁸ H ¹⁴ O)	-4,2	36	Rosmarinic Acid (C ¹⁸ H ¹⁶ O ⁸)	-7,1
15	$\frac{(C^{10} H^{10})}{(C^{10} H^{16} O)}$	-4,4	37	Chicoric Acid (C ²² H ¹⁸ O ¹²)	-7,1
16	Menthol (C ¹⁰ H ²⁰ O)	-4,4	38	Catechin (C ¹⁵ H ¹⁴ O ⁶)	-7,2
17	Eucalyptol	-4,4	39	Apigenin	-7,5

	$(C^{10}H^{18}O)$			$(C^{15}H^{10}O^5)$	
18	Phytol (C ²⁰ H ⁴⁰ O)	-4,4	40	Chloronergic Acid (C ¹⁶ H ¹⁸ O ⁹)	-7,6
19	Nerylacetate $(C^{12}H^{20}O^2)$	-4,4	41	Eriodictyol (C ¹⁵ H ¹² O ⁶)	-7,6
20	Linalyl Acetate (C ¹² H ²⁰ O ²)	-4,5	42	Ellagic Acid (C ¹⁴ H ⁶ O ⁸)	-7,9
21	Methyl Eugenol (C ¹¹ H ¹⁴ O ²)	-4,5	43	Rutin (C ²⁷ H ³⁰ O ¹⁶)	-7,9
22	Bergamotene (C ¹⁵ H ²⁴)	-4,7	44	Quarcetin (C ¹⁵ H ¹⁰ O ⁷)	-8,0
				~ .	

Ad-Dawaa' J. Pharm. Sci. 5 (2)

Table 1. ΔG Score of *Ocimum Basillicum* Compounds

Various studies state that these three compounds have potential in inhibiting cancer, quarcetin can improve cancer progression through various mechanisms: including down regulation of mutant p53 proteins, G1 phase arrest, tyrosine kinase inhibition, and down regulation of cell survival, proliferative and anti-apoptotic proteins(Lotfi et al., 2023), quercetin also significantly inhibited the proliferation of human Glioblastoma U251 cells(Y. Liu et al., 2017). Rutin has been shown to utilize numerous mechanisms to obstruct cancer initiation and progression by modulating several deregulated signaling pathways involved inflammation, in apoptosis, angiogenesis, and autophagy. Rutin has shown tremendous anticancer potential against a range of cancer cell lines including glioblastoma (Pandey et al., 2021). Rutin also inhibits lipid accumulation via reducing lipogenesis(Wu et al., 2011). While Ellagic acid inhibited proliferation and induced accumulation of the S-phase cells in the cell cycle. activated apoptosis pathway associated with caspase-3 activation, and enhanced ATRA-induced differentiation in

human leukimia cell(Mertens-Talcott et al., 2003). Where the IDH mutation greatly affects the growth of glioblastoma(S. Han et al., 2020), lipogenesis(Filipp et al., 2012), and human leukemia cancer(Mckenney et al., 2013)

Bond Interaction

The docking results showed two types of hydrogen bonds: conventional hydrogen bonds (H-X) and carbon-hydrogen bonds (CH-X), Van Der Waals bonds, and salt bridge bonds between the binding sites of the 4L03 protein. In the interaction of the AKG-4L03 complex, there is one conventional hydrogen bonds interaction with the amino acids ASN:96, three Salt Bridge interactions in ARG:100, ARG:109 and ARG:132 and there are five Van Der Waals bonds see Figure 3A

The results of the bond interaction with the ten test compounds with the lowest ΔG score (see in table 2). Voradenib interacts to form 3 hydrogen bonds, 6 halogen bonds, 2 carbon hydrogen bonds, and 8 van der Waals bonds. Where the bond interactions are the same as AKG ligands in almost all amino acids except TYR:139 with a better predicted activity mechanism. Where the halogen bond plays an important role in pharmacological

dissociation constant (Kd) is positively modified, that plays important approach in

activity which can increase parameters with improves the thermodynamic parameters of the system (ligand-receptor pair), and the Based on table 2, the Quarcetin compound with the lowest ΔG score forms three hydrogen interactions with the same interactions with AKG as ARG:109, ARG:132. ARG:100, and In rutine compounds form four hydrogen bond interactions and three carbon hydrogen bonds, ARG:109, ARG:100, ASP:275 and THR:77 form the same interactions as native ligands. The same hydrogen bonding lead optimization of drug development and increases the binding affinity and binding selectivity(Suárez-Castro et al., 2018) interaction on the amino acid ASN:96 is found in the compounds rosmarinic acid and chicoric acid, where Rosmarinic acid is the compound with the most hydrogen bond interactions, several of them have similar

interactions, several of them have similar interactions with native ligand AKG in the amino acids ARG:109, ARG:100, ASN:96, and ALA:307. As for the Chicoric acid compound, the formation of interactions between the amino acids ASN:96, ARG:132, ARG:100, ARG:109, and ALA:308 makes it

the compound with the most interactions in

common with AKG

COMPOUNDS	AMINO ACID	BOND INTERACTION	COMPOUNDS	AMINO ACID	BOND INTERACTIONS
	SEQUENCE	nulliulellou		SEQUENCE	Internetions
Vorasidenih	THR·311	Hydrogen	AKG (Native	ASN-96	Hydrogen
vorusiucinis	THR:75 and	Interaction	Ligand)	1011.90	Interaction
	ARG:109.	Interaction	Elguna)		Interaction
	ASN:96.	Halogen		ASP:100.	Salt Bridge
	GLU:306.	Interaction		ARG:132. and	Interaction
	HIS:309,			ARG:109	
	ALA:308,				
	ALA:307 and				
	THR:75.				
	ILE:76 and	Carbon-Hydrogen		THR:77,	Van der waals
	GLY:310	Interaction		SER:94,	Interaction
	ARG:82,	Van der waals	•	TYR:139,	
	ALA:74,	Interaction		ASP:275, and	
	LYS:72,			ALA:308	
	ARG:100,				
	ARG:132,				
	ASP:275,				
	SER:94,				
	THR:77				
Rosmarinic	ARG:109,	Hydrogen	Eriodictyol	THR:75,	Hydrogen
Acid	ARG:100,	Interaction	·	ARG:132,	Interaction
	GLU:306,			ARG:100,	
	ALA:307,			ARG:109, and	
	THR:75,			ALA:307.	
	ASP:97 and				
	ASN:96.				
	LYS:72,	Van der waals		SER:94,	Van der waals
	HIS:309,	Interaction		ASP:97,	Interaction
	GLY:310,			ASN:96,	
	ALA:74,			THR:311,	
	ILE:76,			GLY:310,	
	ARG:82,			ALA:74,	
	THR:77,			HIS:309,	
	ARG:132,			ALA:308,	
	TYR;139.			GLU:306,	
	ALA:308	Carbon-Hydrogen		ASP:275	
Chicoric Acid	THR.75	Hydrogen	Ellagic Acid	ARG:100 and	Hydrogen
Shittin Ath	ASN-96	Interaction	Lingic Acid	ARG-132	Interaction
	ARG:132	Interaction		/100.152.	Interaction
	ARG:100				
	ARG:109				
	ALA:308.				
	ASP:97	Van der waals		· LYS.72	Van der waals
	ASP:275	Interaction		ALA:307	Interaction
	GLY:310.	meraction		ALA:74	meraction
	HIS:309			ALA:308	
	ALA:74			GLU:306.	
	ASP:79.			GLY:310.	
	LYS:72.			THR:75.	

Table 2. Bond Interaction of G	Dcimum Basillicum	Compounds
--------------------------------	-------------------	-----------

	GLU:306,			THR:77,	
	ALA:307.			SER:94,	
	SER:94	Carbon-Hydrogen		TYR:139,	
		Interaction		ASP:275, And	
				ASN:96	
Catechin	ARG:100, and	Hydrogen	Rutin	ARG:109,	Hydrogen
	ALA 308.	Interaction		ARG:100.	Interaction
	112110000			ALA:307 and	
				ASP.275	
	TVP.272	Van der waale		TVP:130	Van der waals
	A SD:275	Interaction		IIK.157,	Interaction
	ADC.100	Interaction		ILL.70,	Interaction
	AKG:109,			VAL:270,	
	ALA:507,			ASP:279,	
	HIS:309,			HIS:309,	
	GLY:310,			ALA:/4,	
	THR:/5,			ALA:308,	
	ASN:96,			LEU:288,	
	THR:311,			THR:311,	
	SER:94, and			GLU:306,	
	ASP:97			ASN:96,	
				ARG:132,	
				ASP:97.	
				SER:94,	Carbon-Hydrogen
				THR:77,	Interaction
				GLY:310	
Apigenin	ARG:109,	Hydrogen	Quarcetin	ARG:109,	Hydrogen
• •	ARG:100, and	Interaction		ARG:100, and	Interaction
	ARG:132.			ARG:132.	
	ASP:97.	Van der waals		ALA:307.	Van der waals
	SER:94	Interaction		ALA:308.	Interaction
	ASP:275			GLU:306	
	$\Delta I \Delta \cdot 307$			HIS:309	
	GLU:306			GLV:310	
	AL A 208			TUD.75	
	ALA.308,			TUD.211	
	IIIS.509,			ASNIOC	
	$L_{15.72}$			ASIN:90,	
	ALA:/4,			SER:94,	
	IHR:311,			ASP:97 and	
	ASN:96.			ASP:275	
	GLY:310	Carbon-Hydrogen			
		Interaction			
Chlorogenic	ARG:109,	Hydrogen	Mycrene	ALA:307,	Van der waals
Acid	ARG:100,	Interaction		THR:75,	Interaction
	HIS:309, and			LYS:72,	
	THR:			HIS:309,	
	77ARG:132,	Van der waals		ALA:308,	
	ASN:96,	Interaction		ARG:109,	
	GLU:306,			ASN:96,	
	ALA:308,			ARG:100,	
	LYS:72.			SER:94.	
	ALA:74			ASP:97.	
	THR \cdot 75			ARG:132 and	
	GI Y·310			GLY-310	
	TVD.272			011.010	
	TVD.120				
	1 1 K.139,				
	ASP:2/3,				
	SER:94, and				
	GLN:138.				
	ALA:307	Carbon-Hydrogen			
		Interaction			

Figure 4. AKG-4L03 3D Interaction (A), Rosmarinic Acid-4L03 3D Interaction (B), Quercetin-4L03 3D Interaction (C), and Chicoric acid-4L03 3D Interaction (D)

The binding pose show that the O atom in every group compound is responsible for most of the hydrogen interactions that occur. The amino acids ARG:100 and ARG:109 in AKG interact with HH22 and **HH12** atoms. In rosmarinic acid, oxypropanoic groups interact to form conventional hydrogen bonds with atoms HH22 and HH21 in the respective amino acids ARG:100 and ARG:109, the same thing also happens with Quarcetin in chromenone groups and as for Chicoric acid, the amino acids ARG:100 and ARG:109 interact in atom HH22 and HH12 with atom O in keton group (Figure 4), so it is predicted to have the possibility of having the same biological activity (Prasetiawati et al., 2021). Chicoric acid also have more interaction activity with amino acids than the native ligand. Where conventional hydrogen more bond bound amino acids are interactions on predicted increase their activity to (Frimayanti, Neni, Anita Lukman, 2021)

Pharmacokinetics Profile and Toxicity

Absorption, distribution. metabolism. excretion, and toxicity (ADMET) properties play key roles in the development of drugs. This information is especially useful when to conduct environmental and human hazart assessment(Cheng et al., 2012). The most critical rate limiting step in the chemical assessment workflow is safety the availability of high quality data using the ADMETlab 2.0 instrument.

The ADME prediction was shown in table 3. In predicting absorption, vorasidenib cannot be absorbed properly in the intestinal, whereas chicoric acid cannot be absorbed in the intestine, while the Rosmarinic acid can be adsorbed well in all absorption parameters, goes along with it Rosmarinic Acid penetrated through Caco-2 cell monolayers and was detected by HPLC-PDA, thus, this study is evidence of the extensive of RA while penetrating through Caco-2 cells(Woottisin et al., 2022). In distribution prediction, all compounds have a poor bioavailability value. This is in accordance with the results of in vitro testing that rosmarinic acid have high hydrophilicity make it exhibit poor permeation across intestinal epithelial cells(Wang et al., 2017). As well as quarcetin has several health effects bioavailability and theraphy, but the

unfortunately is poor(Kasikci & Bagdatlioglu, 2016). Only vorasidenib can't pass/penetrate across the blood-brain barrier. The research result show that a metaobnomic study demonstrated that Chicoric Acid has the ability to cross the blood-brain barrier(Q. Liu et al., 2017), due to the antioxidative effect of rosmarinic acid, it was thought that it may regulate this protein increase in astrocyte regulation. The weakening of microglial activation, Iba-1, an important biomarker for microglial activation, is thought to have its expression downregulated, but the positive Iba-1 activity with the effect of rosmarinic acid is important to balance microglia activation. Where the immunohistochemical examination of IBA-1 and GFAP expressions is traumatic brain injury associated with the blood-brain barrier(Özevren et al., 2020). In metabolism prediction, Rosmarinic acid and Quarcetin can metabolism up to 15-20% of undergoing phase I metabolism, while chicoric acid predicted to have a poor metabolism. In excretion parameters, Rosmarinic acid has the highest score in clearance test, it becomes to predicted to have the best excretion

Ad-Dawaa' J. Pharm. Sci. 5 (2)

NO	COMPOUN	ABS	ABSORBTION			DISTRIBUTION			METABOLISM			EKSKRETION	
	DS	Cac	HI	MD	VDss	PPB	Fu	BB	CY	CY	CY	Total	Т
		o-2	Α	СК				В	Р	Р	P2C	Clearance	1/2
									3A4	2D6	9		
1	Vorasidenib	-		3.2e	4.144	96.86	3.24	+++	++		-	4.546	0.33
		4.16		-05		2%	0%						8
		6											
2	Rosmarinic	-		6.9e	0.369	97.72	2.04				+	15.347	0.95
	Acid	6.00		-06		2%	3%						9
		5											
3	Chicoric	-	+	9.2e	0.296	98.82	1.65				-	4.971	0.97
	Acid	6.45		-06		8%	5%						4
		0											
4	Quarcetin	-		7.7e	0.579	95.49	7.42		-	-	+	8.284	0.92
		5.20		-06		6%	3%						9
		4											

Table 3. ADME Prediction

The toxicity prediction (see table 4), Quarcetion has a toxic probability of being carcinogenic, but the in vivo and in vitro results show that quercetin classified as relatively safe and practically non-toxic for human use(Vitro et al., 2020). Vorasidenib is also predicted to have serious effects on human health because of its ability to damage genomes or interfere with cellular metabolic processes(Xiong et al., 2021)

COMPOUNDS		TOXICITY				
					TOXIC	OPHORE
	AMES	Rat Oral	Carcino	FDAM	Genotoxic	NonGenotoxic
	Toxicity	Acute	gencity	DD	Carcinogenicit	Carcinogenicity
		Toxicity			y Rule	Rule
Vorasidenib			+++	+++	1 alert(s)	0 alert(s)
Rosmarinic		-			1 alert(s)	1 alert(s)
Acid						
Rosmarinic		-			1 alert(s)	1 alert(s)
Acid						
Quarcetin	+			-	0 alert(s)	0 alert(s)
	COMPOUNDS Vorasidenib Rosmarinic Acid Rosmarinic Acid Quarcetin	COMPOUNDS AMES Toxicity Vorasidenib Norasidenib Rosmarinic Acid Rosmarinic Acid Quarcetin +	COMPOUNDSTOXICAMES ToxicityRat Oral Acute ToxicityVorasidenibRosmarinicAcidRosmarinicAcidQuarcetin++	COMPOUNDSTOXICITYAMES ToxicityRat Oral Acute ToxicityCarcino gencity ToxicityVorasidenibVorasidenibAcidAcidQuarcetin+	COMPOUNDSTOXICITYAMES ToxicityRat Oral Acute ToxicityCarcino BDAM DDVorasidenibAcute Acute ToxicityVorasidenib+++RosmarinicAcidAcidQuarcetin+	TOXICITYAMESRat Oral AcuteCarcino gencityFDAM DDGenotoxic Carcinogenicit ToxicotyVorasidenib++++1 alert(s)Rosmarinic1 alert(s)Acid1 alert(s)Rosmarinic1 alert(s)Acid1 alert(s)Quarcetin+1 alert(s)

CONCLUSION

This study indicated that the compound Quarcetin has the smallest binding free energy of -8.5, while the most hydrogen bond in ligan interaction is Rosmarinic acid with seven hydrogen bonds in amino acids including ARG:109, ARG:100, GLU:306, ALA:307, THR:75, ASP:97 and ASN:96. Meanwhile, Chicoric acid becomes a compound with the same of amino acid interactions with the native AKG ligand, so it is predicted to have the same biological activity, these compounds with the highest affinities are predicted to be developed as potential IDH inhibitors, While the results of the pharmacokinetic and toxicity profiles showed that rosmarinic acid and quarcetin are well absorbed, while chicoric acid cannot be absorbed in intestinene. The four compound have good bioavailability value, and not meant to be toxic compound so they are safe to use. However, further laboratory investigations must be conducted, like in vitro and in vivo assays.

REFERENCES

- Aminian, A. R., Mohebbati, & R., Boskabady, M. H. (2022). The Effect of Ocimum basilicum L. and Its Main Ingredients on Respiratory Disorders: An Experimental, Preclinical, and Clinical Review. Frontiers in 1 - 14.Pharmacology, 12(January), https://doi.org/10.3389/fphar.2021.805 391
- Antonescu, A. I., Miere, F., Fritea, L., Ganea, M., Zdrinca, M., Dobjanschi, L., Antonescu, A., Vicas, S. I., Bodog, F., Sindhu, R. K., & Cavalu, S. (2021). Perspectives on the combined effects of ocimum basilicum and trifolium pratense extracts in terms of phytochemical profile and pharmacological effects. Plants, 10(7). https://doi.org/10.3390/plants10071390
- Avetisyan, A., Markosian, A., Petrosyan, M., Sahakyan, N., Babayan, A., Aloyan, S., & Trchounian, A. (2017). Chemical composition and some biological activities of the essential oils from basil Ocimum different cultivars. **BMC** *Complementary* and Alternative Medicine, 17(1), 1 - 8. https://doi.org/10.1186/s12906-017-1587-5
- Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P. W., & Tang, Y. (2012). AdmetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. *Journal of Chemical Information and Modeling*, *52*(11), 3099–3105. https://doi.org/10.1021/ci300367a
- Desai, A., Qazi, G., Ganju, R., El-Tamer, M., Singh, J., Saxena, A., Bedi, Y., Taneja, S., & Bhat, H. (2008). Medicinal Plants and Cancer Chemoprevention. *Current Drug Metabolism*, 9(7), 581–591.

https://doi.org/10.2174/1389200087858 21657

- Deshpande, R. R., Pandey, A., Nyayanit, N., & Modak, M. (2020). Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19. The COVID-19 resource centre is hosted on Elsevier Connect, the company 's public news and information. January.
- Dris, D., Tine-Djebbar, F., Bouabida, H., & Soltani, N. (2017). Chemical composition and activity of an Ocimum basilicum essential oil on Culex pipiens larvae: Toxicological, biometrical and biochemical aspects. *South African Journal of Botany*, *113*, 362–369. https://doi.org/10.1016/j.sajb.2017.09.0 13
- Filipp, F. V., Scott, D. A., Ronai, Z. A., Osterman, A. L., & Smith, J. W. (2012). Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells. *Pigment Cell and Melanoma Research*, 25(3), 375–383. https://doi.org/10.1111/j.1755-148X.2012.00989.x
- Fitsiou, E., Mitropoulou, G., Spyridopoulou, K., Tiptiri-Kourpeti, A., Vamvakias, M., Bardouki, H., Panaviotidis, M. I., Galanis, A., Kourkoutas, Y., Chlichlia, K., & Pappa, A. (2016). Phytochemical profile and evaluation of the biological activities of essential oils derived from greek aromatic plant species the Ocimum basilicum, Mentha spicata, Pimpinella anisum and Fortunella margarita. *Molecules*, 21(8), 1-15. https://doi.org/10.3390/molecules2108 1069
- Frimayanti, Neni, Anita Lukman, L. N. (2021). DEN-2 NS2B / NS3 serine protease. *Chempublish Journal Vol.* 6 No. 1 (2021) 54-62 Studi, 6(1), 54–62.
- Han, C. H., & Batchelor, T. T. (2017). Isocitrate dehydrogenase mutation as a therapeutic target in gliomas. *Chinese Clinical Oncology*, 6(3), 1–11. https://doi.org/10.21037/cco.2017.06.1 1

- Han, S., Liu, Y., Cai, S. J., Qian, M., Ding, J., Larion, M., Gilbert, M. R., & Yang, C. (2020). IDH mutation in glioma: molecular mechanisms and potential therapeutic targets. *British Journal of Cancer*, *122*(11), 1580–1589. https://doi.org/10.1038/s41416-020-0814-x
- Hikmawanti, N. P. E., Hariyanti, H., Nurkamalia, N., & Nurhidayah, S. Chemical Components (2019).of Ocimum basilicum L. and Ocimum tenuiflorum L. Stem Essential Oils and Their Evaluation of Antioxidant Activities Using DPPH Method. Pharmaceutical Sciences and Research, 6(3),149-154. https://doi.org/10.7454/psr.v6i3.4576
- Kasikci, M. B., & Bagdatlioglu, N. (2016).
 Bioavailability of quercetin. *Current Research in Nutrition and Food Science*, 4(SpecialIssue2), 146–151.
 https://doi.org/10.12944/CRNFSJ.4.Sp ecial-Issue-October.20
- Kayabolen, A., Yilmaz, E., & Bagci-Onder,
 T. (2021). IDH mutations in glioma: Double-edged sword in clinical applications? *Biomedicines*, 9(7). https://doi.org/10.3390/biomedicines90 70799
- Kolina, J., Sumiwi, S. A., & Levita, J. (2019). IKATAN **METABOLIT** MODE SEKUNDER DI TANAMAN AKAR KUNING (Arcangelisia flava L.) DENGAN NITRAT **OKSIDA** SINTASE. FITOFARMAKA: Jurnal Farmasi, 45-52. Ilmiah 8(1),https://doi.org/10.33751/jf.v8i1.1171
- Liu, Q., Chen, Y., Shen, C., Xiao, Y., Wang, Y., Liu, Z., & Liu, X. (2017). Chicoric acid supplementation prevents systemic inflammation-induced memory impairment and amyloidogenesis via inhibition of NF-κB. *FASEB Journal*, *31*(4), 1494–1507. https://doi.org/10.1096/fj.201601071R
- Liu, Y., Tang, Z. G., Lin, Y., Qu, X. G., Lv, W., Wang, G. Bin, & Li, C. L. (2017).
 Effects of quercetin on proliferation and migration of human glioblastoma U251 cells. *Biomedicine and Pharmacotherapy*, 92, 33–38.

https://doi.org/10.1016/j.biopha.2017.0 5.044

Lotfi, N., Yousefi, Z., Golabi, M., Khalilian, P., Ghezelbash, B., Montazeri, M., Shams, M. H., Baghbadorani, P. Z., & Eskandari, N. (2023). The potential anticancer effects of quercetin on blood, prostate and lung cancers: An update. *Frontiers in Immunology*, *14*(February), 1–21.

https://doi.org/10.3389/fimmu.2023.10 77531

- Mckenney, A. S., Levine, R. L., Mckenney,
 A. S., & Levine, R. L. (2013). Isocitrate dehydrogenase mutations in leukemia Find the latest version: Review series Isocitrate dehydrogenase mutations in leukemia. 123(9), 3672–3677. https://doi.org/10.1172/JCI67266.3672
- Mertens-Talcott, S. U., Talcott, S. T., & Percival, S. S. (2003). Low concentrations of quercetin and ellagic acid synergistically influence proliferation, cytotoxicity and apoptosis in MOLT-4 human leukemia cells. *Journal of Nutrition*, 133(8), 2669– 2674.

https://doi.org/10.1093/jn/133.8.2669

- Nursamsiar, Toding, A. T., & Awaluddin, A. (2016). Studi In Silico Senyawa Turunan Analog Kalkon Dan Pirimidin Sebagai Antiinflamasi: Prediksi Absorpsi, Distribusi, dan Toksisitas. *Pharmacy*, 13(01), 92–100.
- Özevren, H., Deveci, E., & Tuncer, M. C. (2020). The effect of rosmarinic acid on deformities occurring in brain tissue by craniectomy method. Histopathological evaluation of iba-1 and gfap expressions. *Acta Cirurgica Brasileira*, *35*(4), 1–10. https://doi.org/10.1590/s0102-865020200040000006
- Pandey, P., Khan, F., Qari, H. A., & Oves, M. (2021). Rutin (Bioflavonoid) as cell signaling pathway modulator: Prospects in treatment and chemoprevention. *Pharmaceuticals*, 14(11). https://doi.org/10.3390/ph14111069
- Pantsar, T., & Poso, A. (2018). Binding affinity via docking: Fact and fiction. *Molecules*, 23(8), 1DUMMY.

https://doi.org/10.3390/molecules2308 1899

- Perna, S., Alawadhi, H., Riva, A., Allegrini,
 P., Petrangolini, G., Gasparri, C.,
 Alalwan, T. A., & Rondanelli, M.
 (2022). In Vitro and In Vivo Anticancer
 Activity of Basil (Ocimum spp.): Current Insights and Future Prospects.
- Prasetiawati, R., Suherman, M., Permana, B., & Rahmawati, R. (2021). Molecular Docking Study of Anthocyanidin Compounds Against Epidermal Growth Factor Receptor (EGFR) as Anti-Lung Cancer. Indonesian Journal of **Pharmaceutical** Science and Technology, 8(1), 8. https://doi.org/10.24198/ijpst.v8i1.2987 2
- Rezzoug, M., Bakchiche, B., Gherib, A., Roberta, A., Guido, F., Kilinçarslan, Ö., Mammadov, R., & Bardaweel, S. K. (2019). Chemical composition and bioactivity of essential oils and Ethanolic extracts of Ocimum basilicum L. and Thymus algeriensis Boiss. & Reut. from the Algerian Saharan Atlas. BMC Complementary and Alternative Medicine. 19(1). 1 - 10.https://doi.org/10.1186/s12906-019-2556-y
- Suárez-Castro, A., Valle-Sánchez, M., Cortés-García, C. J., & Chacón-García, L. (2018). Molecular Docking in Halogen Bonding. *Molecular Docking*. https://doi.org/10.5772/intechopen.729 94
- Syahputra, G., Ambarsari L, & T, S. (2014). Simulasi docking kurkumin enol, bisdemetoksikurkumin dan analognya sebagai inhibitor enzim12lipoksigenase. *Biofisika*, 10(1), 55–67.
- Vitro, I., Vivo, I., Approaches, I. S., Navarrete-vazquez, G., Adolfo, A., Hidalgo-figueroa, S., Isolina, T., S, J. C., & Victor, Y. (2020). *Toxicological Screening of Four Bioactive Citroflavonoids*: 1–12.
- Wang, J., Li, G., Rui, T., Kang, A., Li, G., Fu, T., Li, J., Di, L., & Cai, B. (2017).
 Pharmacokinetics of rosmarinic acid in rats by LC-MS/MS: absolute bioavailability and dose proportionality.

RSC Advances, 7(15), 9057–9063. https://doi.org/10.1039/c6ra28237g

- Wisbeck, E., Facchini, J. M., Alves, E. P., & Marcia, L. L. (2020). A polysaccharide fraction extracted from Pleurotus ostreatus mycelial biomass inhibit Sarcoma 180 tumor. 89(2017), 2013– 2020.
- Woottisin, N., Sukprasert, S., Kulsirirat, T., Tharavanij, T., & Sathirakul, K. (2022).
 Evaluation of the Intestinal Permeability of Rosmarinic Acid from Thunbergia laurifolia Leaf Water Extract in a Caco-2 Cell Model. *Molecules*, 27(12). https://doi.org/10.3390/molecules2712 3884
- Wu, C. H., Lin, M. C., Wang, H. C., Yang, M. Y., Jou, M. J., & Wang, C. J. (2011).
 Rutin Inhibits Oleic Acid Induced Lipid Accumulation via Reducing Lipogenesis and Oxidative Stress in Hepatocarcinoma Cells. *Journal of Food Science*, 76(2), T65–T72. https://doi.org/10.1111/j.1750-3841.2010.02033.x
- Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D. (2021). ADMETIab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. *Nucleic Acids Research*, 49(W1), W5–W14. https://doi.org/10.1093/nar/gkab255
- Yi, F. X., Ma, J., Ni, W. M., Chang, R., Liu, W. Da, Han, X. Bin, Pan, D. X., Liu, X. B., & Qiu, J. W. (2013). The top cited articles on glioma stem cells in Web of Science. *Neural Regeneration Research*, 8(15), 1431–1438. https://doi.org/10.3969/j.issn.1673-5374.2013.15.011
- Zarlaha, A., Kourkoumelis, N., Stanojkovic, T. P., & Kovala-Demertzi, D. (2014).
 Cytotoxic activity of essential oil and extracts of Ocimum Basilicum against human carcinoma cells. Molecular docking study of isoeugenol as a potent cox and lox inhibitor. *Digest Journal of Nanomaterials and Biostructures*, 9(3), 907–917.

Ziemska, J., Solecka, J., & Jarończyk, M.

(2020). In silico screening for novel leucine aminopeptidase inhibitors with 3,4-dihydroisoquinoline scaffold. *Molecules*, 25(7). https://doi.org/10.3390/molecules2507 1753