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ABSTRACT 

The high concentration of detergent in the aquatic ecosystem potentially affects the fish's 

physiological condition by disrupting the respiration process and changing the concentration of blood 

components and chemistry. This study aimed to determine the condition of the hematological parameters 

of tilapia (Oreochromis niloticus) exposed to wastewater from the laundry industry. Each treatment was 

stocked with five fish per aquarium (50x30x30 cm). This study used a completely randomized design 

(CRD) technique with treatments include P0 (0%) as a control, P1 (1%), P2 (2%), P3 (3%), P4 (4%), and 

P5 (5%) with each treatment exposed to a specific concentration of wastewater and residues. The results 

showed that the hemoglobin levels of treatments decreased, with the lowest mean of hemoglobin level 

found in the P2 (7.05 gr%), and the lowest concentration on the 30th day was 7.71 gr%. There were no 

significant effects of wastewater on erythrocytes and leucocytes number among treatments (P > 0.05). 

While there were increasing hematocrit levels, the largest mean level was found in the P4 treatment with a 

value of 24.11 gr%, and the largest mean on the 20th day of observation showed a value of 23.51 gr%. 

Wastewater from the laundry industry can affect tilapia's hematological condition by decreasing the 

hemoglobin concentration and increasing the hematocrit levels above the normal condition. 
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INTRODUCTION 

Detergent is a type of water-soluble 

surfactant used to remove impurities from 

laundry in the household and laundry 

industries. The laundry industry's work process 

is simple and straightforward: to dissolve 

detergents in water because detergents have a 

better hardness than soap (Yuliani et al., 2015). 

Therefore, this industry will produce 

wastewater that contains detergents, which are 

discharged directly to the nearest aquatic 

environment. (Ardiyanto & Yuantari, 2016; 

Yusmidiarti, 2016). 

Detergent addition from the laundry 

industry wastewater cause water quality 
reduction (Sumisha et al., 2015; Uzma et al., 

2018). The negative effect of detergents 

deteriorates water quality due to their different 

chemical components (Giagnorio et al., 2017; 

Goel & Kaur, 2020), led toxicity and genotoxic 

effects on aquatic life (Adewoye, 2010; 

Sobrino-Figueroa, 2013), and tend to be the 

most resilient to biodegradation (Hidaka et al., 

2010; Verdia et al., 2016). Surfactant is one of 

the main ingredients of the detergent, causing 

foam in the water and creating a layer that 

inhibits the process of transferring oxygen from 

the air to water (Sugito et al., 2014; Srinet et al., 

2017). 

Fishes as bioindicator play a role in 

monitoring the effect of heavy metals 

contamination (Authman, 2015; Łuczyńska et 

al., 2018). Tilapia (Oreochromis sp.) used as 

biomarker to assess water pollution (Osman, 

2012), bioaccumulation (Abdel-Baki et al., 

2011; Eneji et al., 2011), and measure the risk 

of pollution to humans (Adel et al., 2016). 
The accumulation of detergent from the 

laundry industry will cause a low supply of 

dissolved oxygen (DO) in the water. This 

condition will disrupt air-breathing fish (Lee et 

al., 2012; Franklin, 2014), reduce the energy as 

DO declined (Tran‐Duy et al., 2012), and cause 

death for a longer period of time (Hobbs & 
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McDonald, 2010). Death can occur due to 

physiological deviations of blood components. 

Changes in blood components and blood 

chemistry, both qualitatively and 

quantitatively, can affect the fish's condition. 

Therefore, hematological conditions can be 

used as indicators to detect and determine a 

fish's health status (Sabilu, 2010). 

Only a few research on the laundry 

industry's wastewater and residues affect 

Oreochromis niloticus hematological 

condition, so further studies are necessary. This 

research contribution is expected to provide 

effective strategies for controlling laundry 

wastewater's negative impact on the aquatic life 

and environment, mainly to fish. 

 

MATERIALS AND METHODS 

Tilapia were obtained from the Undulako 

Fish Seed Center, Kolaka Regency, Southeast 

Sulawesi. This research was conducted by 

using a completely randomized design (CRD) 

method consisting of six treatments and three 

repetitions: P0 (0%), P1 (1%), P2 (2%), P3 

(3%), P4 (4%) and P5 (5%) with each treatment 

exposed to a specific concentration of 

wastewater and residues from laundry industry. 

Acclimatization and culture. Four 

months old tilapia (5±0.3 - 7±0.2 g, 7±0.4 - 

9±0.1 cm) were acclimatized in two larger 

aquariums (100x80x80 cm) before stocked in 

the experimental aquarium (50x30x30 cm). 

After acclimatization, tilapia were weighed and 

measured. Tilapia were stocked to the 18 

experimental aquariums with a stocking density 

of five fish. Continuous aeration was performed 

homogenously to maintain a stable oxygen 

concentration in each tank (Siburian et al., 

2019). A total of 5% of water volume was 

siphoned and exchanged daily to remove the 

uneaten feed and the fish feces. Tilapia culture 

was conducted for 30 days. The food used is a 

commercial tilapia feed with a protein content 

of 40% (Siburian et al., 2019). Tilapia was fed 

on a limited basis, twice a day, at 08.00 and 

17.00 WITA. The feed is distributed evenly and 

is given up to 5% of tilapia weight per day. 

Parameters. The parameters observed in 

this study include water quality, surfactant 

analysis of wastewater from the laundry 

industry, and hematological parameters. The 

water quality parameters consist of dissolved 

oxygen, temperature, and pH, measured every 

day during the study. The anionic surfactant test 

consists of a test tube filled with 10 ml of 

methylene blue solution, 5 ml of chloroform 

was added, and then 1% of the detergent 

solution was added and stirred, resulting in a 

color change. The cationic surfactant test 

included a test tube with 10 ml of 0.002% blue 

bromine phenol solution in Na acetate buffer 

pH 3.6-3.9, adding 1% of the detergent. It was 

stirred until distributed uniformly, and the color 

was observed. The blood was sampled through 

the caudal vein near the tail between tilapia 

scales. Blood samples are slowly suctioned up 

to 2 ml each tail, then transferred to a 4 ml 

vacuum tube that has been moistened with 

anticoagulation. Blood samples were taken on 

the first day as a control, then on the 10th, 20th, 

and 30th days. Hemoglobin concentration was 

measured by using the Sahli method. Total 

erythrocyte and total leukocyte were counted by 

using an improved Neubauer hemocytometer. 

The hematocrit measurement was conducted 

using microhematocrit tubes and then 

centrifuged at 1500 rpm.  

Data analysis. The data obtained from the 

hematological observations of tilapia were 

analyzed using ANOVA and followed by the 

Duncan test using IBM SPSS version 23. 

Differences were considered as being 

significant at p < 0.05. 

 

RESULT AND DISCUSSION 

Water quality analysis. According to 

Table 1, it is shown that water quality 

parameters of control P0 have not changed from 

the beginning to the end of the experiment. 

There were some differences in water quality 

data between various concentration treatments. 

In general, DO values of treatments decreased 

during the 30 days of the study. In control P0, 

the DO value was quite stable from the 

beginning to the end of the study. In the 

treatment of P1, the DO value decreased, 

starting from day 10 to day 30. The pH value in 

P1 treatment has increased from day 10 to day 

30. The other treatments of P2, P3, P4, and P5 

showed a similar trend by decreasing the DO 



Vol 8(1), June 2020                                                                                                           Biogenesis 71 
 

concentrations and increasing the pH. In 

contrast, the temperature of all treatments 

during the investigation tends to be stable.

Table 1. Results of the analysis and measurement of water analysis 

Concentration 

Day 0 Day 10 Day 20 Day 30 

DO 
(mg/L) 

Temp. 
(°C) 

pH DO 
(mg/L) 

Temp. 
(°C) 

pH DO 
(mg/L) 

Temp. 
(°C) 

pH DO 
(mg/L) 

Temp. 
(°C) 

pH 

0% 6.6 26.7 7.1 6.6 26.3 7.1 6.6 26.8 7.7 6.5 25.3 7.2 

1% 6.7 26.6 7.2 6.4 26.5 7.4 5.2 26.5 7.6 4.3 23.4 7.8 

2% 6.9 26.4 7.2 5.8 26.3 7.5 4 27.1 8 3.8 23.6 7.6 

3% 6.8 26.6 7.1 6.1 26.5 7.5 4.2 26.5 7.6 3.6 24.8 8.3 

4% 6.7 26.5 7.1 6.2 26.4 7.8 4.4 25.6 8.3 3.9 24.5 8.5 

5% 6.6 26.2 7.1 5.8 25.7 7.4 4.8 26.2 8.2 3.7 23.1 8.3 

Average 6.7 26.5 7.1 6.2 26.3 7.5 4.9 26.5 7.9 4.3 24.1 8.0 

 

This study indicates that wastewater 

treatment from the laundry industry reduces the 

water quality by lowering the DO value. The 

higher the concentration of treatment correlates 

to the lower DO value. Furthermore, the longer 

the duration of the study, the lower the DO 

value. These water quality parameters support 

the primary data on the hematological 

parameter condition of tilapia. These data were 

obtained from DO, pH, and temperature 

measurements during the study from the 

beginning to the end. According to table 1, it is 

shown that there is a decrease in DO in higher 

concentration. This is due to the effect of the 

laundry industry's wastewater that causes a 

reduction in DO transfer, resulting in a decrease 

in the DO. The laundry industry wastewater 

contains detergents that accumulate the 

surfactants in surface and ground water (Ghose 

et al., 2009; Meffe & de Bustamante, 2014), 

causing problems in the sedimentation of water 

(Rebello et al., 2014; Hassan et al., 2017), and 

reducing the system free energy at higher 

concentration (Ivanković & Hrenović, 2010; 

Gao & Sharma; 2013). Besides, the phosphate 

from detergents in the upper part of the river 

can also stimulate aquatic macrophytes and 

float weeds growth (Rajan, 2015; Ramachandra 

et al., 2017). The abundant of aquatic plants 

will increase phosphorus decomposition, affect 

aeration and water quality (Rajan, 2015), and 

deficiency of DO levels (Patty et al., 2015). 

This adversely affects the physiological, 

biochemical, and ionregulatory responses of 

fish (Velisek et al., 201; Rajan, 2015). Water 

temperature during the study fluctuated during 

the study, except in control P0 at a 

concentration of 0%. An increase in water 

temperature also causes a reduction in DO 

levels in the water. The optimal temperature for 

tilapia growth is range 22-30°C (Zuhrawati, 

2014; Nivelle et al., 2019). pH values of water 

at various treatments increase with the high 

detergent concentration due to bases chemical 

of detergent. 

Surfactant analysis of wastewater from 

laundry industry. The anionic surfactant test 

showed a solid blue color in the chloroform 

layer, and the cationic surfactant test showed a 

natural blue color. This is consistent with 

Utomo et al. (2018), if the high anionic 

surfactant content will show blue indicator in 

the chloroform phase. Detergent solution in the 

first press laundry industry used in this study 

contained concentrated surfactants. 

Hemoglobin Concentration. The results 

of the study show a decrease in hemoglobin 

levels in all treatments, except control P0, up to 

the 30th day of measurements. The treatments 

that have been exposed to the wastewater from 

the laundry industry have varied responses to 

the level of hemoglobin in each treatment. The 

lowest hemoglobin levels were found in 

treatments P2, P3, P5, P1, and P4 with an 

average of hemoglobin levels, respectively 7.05 

gr%, 7.06 gr%, 8.79 gr%, 8.98 gr%, and 9.32 

gr%, respectively (Figure 1). The P0 had quite 

a constant hemoglobin level (10.45 gr%) since 

beginning to the end of the experiment. 

Statistical analysis showed that hemoglobin 

levels of P2 was not significantly different from 

P3 (P > 0.05) but was significantly different to 
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the three other concentrations (P1, P3, P5) and 

control treatments (P < 0.05). The hemoglobin 

level of test fish in P5 was not significantly 

different from P1 and P4 (P > 0.05) but was 

significantly different from P2, P3 and control 

treatments. The P0 was significantly different 

from the other five treatments. This fact shows 

that waste from the laundry industry increases 

the accumulation of surfactants on the surface 

water that inhibits the transfer of oxygen to the 

fish, thus reducing the level of hemoglobin in 

tilapia blood under normal conditions 

(Saparuddin & Arbain, 2019).

 
Figure 1. The average level of tilapia hemoglobin in P0 (0%), P1 (1%), P2 (2%), P3 (3%), P4 (4%) and P5 (5%) 

 

The lowest hemoglobin level is in days 30, 

20, 10, and 3, with the following percentage of 

7.71 gr%, 7.80 gr%, 8.86 gr%, and 10.07 gr% 

(Figure 2). The hemoglobin level on day 30 did 

not differ with the hemoglobin level on day 20, 

but was different from the hemoglobin level on 

day 10 and 0 (p < 0.05). The hemoglobin level 

on day 20 was significantly different from the 

hemoglobin level on day 10 and day 0. 

Similarly, the hemoglobin level on day 10 was 

significantly different from the apparent rate of 

hemoglobin on day 0 (p < 0.05). While the level 

of hemoglobin on day 0 varies in real with all 

observed days. This indicates that time 

exposure to the laundry wastewater affects the 

level of hemoglobin tilapia. Low hemoglobin 

levels associated with the low active fishes 

(Satheeshkumar et al., 2012), affect oxygen 

carrying capacity of the blood (Atkins & 

Benfey, 2008), lower metabolic rate, and lower 

energy demand (Chapman et al., 2002). 

 
Figure 2. The average of tilapia hemoglobin levels under observation day 0, day 10th, day 20th and day 30th 

 

Number of Erythrocytes. Figure 3 shows 

that the amount of tilapia’s erythrocytes is not 

subjected to significant quantity changes with 

detergent from the laundry industry. The 

highest erythrocytes number can be found in P1 

(1.64 x 106 cells/mm3), followed by P4 (1.64 x 
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106 cells/mm3), P3 (1.53 x 106 cells/mm3), P5 

(1.52 x 106 cells/mm3), P2 (1.51 x 106 

cells/mm3), and the smallest can be found in 

control P0 (1.47 x 106 cells/mm3). 

 
Figure 3.  The average number of tilapia erythrocyte in the treatment P0 (0%), P1 (1%), P2 (2%), P3 (3%), P4 (4%) and 

P5 (5%) 

 

The erythrocytes number in tilapia among 

the treatment were not different (p > 0.05). The 

total amount of erythrocytes was not affected 

by any particular concentration of wastewater 

from the laundry industry. All treatments had 

average levels of erythrocytes' abundance. The 

erythrocytes concentration in studied fish were 

within the range 0.47-1.78 x 106/mm3 described 

by Maftuch (2018), but was lower than those 

1.13-1.31 x 106/mm3 reported by Ismain & 

Mahboub (2016). The erythrocytes number still 

within range of health tilapia indicates the 

hematopoiesis process is still happening in 

tilapia even though it has been exposed to the 

laundry's wastewater industry. 

Figure 4 shows the erythrocytes number at 

the lowest hemoglobin level at day 0, 30th, 20th, 

and 10th with a consecutive number of 1.46 x 

106 cells/mm3, 1.49 x 106 cells/mm3, 1.52 x 106 

cells/mm3, and 1.65 x 106 cells/mm3. The total 

number of tilapia erythrocytes linked with the 

wastewater from the laundry industry on day 0 

did not actually differ with the erythrocytes 

number on the day 30th and the 20th. However, 

it is different from the day 10th. The 

erythrocytes number on day 30th was not 

significantly different from day 20th and 

day10th. It shows that the wastewater from the 

laundry industry did not affect the number of 

tilapia erythrocytes.

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. The average number of tilapia erythrocyte under observation on day 0, day 10th, day 20th, and day 30th 

 

Number of Leukocytes. Figure 5 shows 

that the tilapia leukocytes number is aligned 

with the waste detergent laundry and won't 

undergo significant quantity changes. The 
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smallest leukocytes can be found in P2 (10.25 x 

104 cells/mm3) followed P3 (11.00 x 104 

cells/mm3), P4 (11.28 x 104 cells/mm3), P5 

(11.39 x 104 cells/mm3), while the highest 

leukocytes can be found in P0 (11.39 x 104 

cells/mm3) and P1 (11.39 x 104 cells/mm3). 

 
Figure 5. The average number of tilapia leukocytes in the treatment P0 (0%), P1 (1%), P2 (2%), P3 (3%), P4 (4%), and 

P5 (5%) 
 

The lowest leukocytes number are found 

on day 20th, day 0, day 10th, and day 30th with 

10.91 x 104 cells/mm3, 11.04 x 104 cells/mm3, 

11.07 x 104 cells/mm3, and 11.44 x 104 

cells/mm3, respectively. The number of tilapia 

leukocytes lined with the waste laundry 

detergent from day 0 to day 30th has no real 

difference. The leukocytes number in this study 

indicates that the hematothesis process 

continues to occur in tilapia even though it has 

been exposed to the waste detergent laundry. 

Several factors affect the number of leukocytes 

in fish, consisting of species (Sadauskas-

Henrique et al., 2011; Seriani et al., 2013; Ribas 

et al., 2016), sex steroid (Milla et al., 2011; 

Krams et al., 2013; Chaves-Pozo et al., 2018), 

and lymphoid organs activity (Tort, 2011; 

Scapigliati, 2013). Leukocytes will decrease if 

the fish is in a response to stress, such as heat 

stress (Davis et al., 2008; Zafalon-Silva et al., 

2017), while elevated leukocytes number due to 

the immune response of stress syndrome, 

inflammatory processes, and oxidative stress 

(Lazado et al., 2010; Tort, 2011; Nardocci et 

al., 2014). 

 
Figure 6. The average number of tilapia leukocytes under observation on day 0, day 10th, day 20th, and day 30th 

 

Hematocrit Level. The results showed an 

increase in hematocrit levels across exposure to 

the laundry detergent treatment up to the day 

30th. The lowest hematocrit level can be found 

in P0 (21.77%). The highest hematocrit level 

can be found in P4 (24.11%), followed by P5 

23.64%, P2 (22.83%), P1 (21.77%)(Figure 7). 
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Figure 7. The average hematocrit value of tilapia in P0 (0%), P1 (1%), P2 (2%), P3 (3%), P4 (4%) and P5 (5%) 

 

Figure 8 shows that the lowest hematocrit 

concentration on day 0, day 10, day 20, and day 

30 are 21.58%, 22.96%, 23.31%, and 23.51%, 

respectively. The statistical analyses showed 

that tilapia hematocrit levels are aligned with 

the concentration of wastewater from the 

laundry industry from day 0 until day 30th, and 

there were no significant differences among 

treatments (p>0.05).  

 
Figure 8. The average hematocrit value of tilapia under observation on day 0, day 10th, day 20th, and day 30th 

 

The higher concentration of the wastewater 

of the laundry correlates to a higher increase of 

the hematocrit level. The normal hematocrit 

range of tilapia is between 21.00%-22.67%, as 

reported by Richard et al., 2003; Aly et al., 

2008; Giron-Perez et al., 2008; Yue & Zhou, 

2008). The high value of hematocrit (above 

normal levels) indicates that the hematopoiesis 

process in tilapia began to be interrupted due to 

exposure from the laundry industry's 

wastewater. The calculation of the hematocrit 

value and hemoglobin level reflects the oxygen 

that carries the blood's carrying power. A low 

concentration of hematocrit can cause damage 

or defects in the osmoregulation process, while 

a high value indicates an increased demand for 

oxygen or hypo-osmotic conditions (Oğuz, 

2015; Zainuddin et al., 2017). The 

contamination of the water by detergent 

residues affects the local ecosystem with stable 

properties in the sediments, ease of absorption, 

and accumulation in the body tissue of fish, 

relevant to human health implication. 

 

CONCLUSION 

Wastewater from the laundry detergent 

industry affects tilapia's hematological 

condition by decreasing the hemoglobin 

concentration and increasing hematocrit levels 

higher than the normal condition, while the 

number of erythrocytes and leukocytes are still 

in the normal level. 
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