Stem Biomass Equation of Eucalyptus urophylla S.T. Blake

  • Melewanto Patabang Sekolah Vokasi Institut Pertanian Bogor
    (ID)
  • Julianus Dising Department of Crop Plants and Horticulture, State Agricultural Polytechnic of Kupang
  • Adrin Adrin Department of Forestry, State Agricultural Polytechnic of Kupang
  • Aah Ahmad Almulqu Doctor of Philosophy Program in Natural Resource and Environment, Faculty of Agriculture, Natural Resources and Environment; University of Naresuan, Thailand

Abstract

Eucalyptus urophylla is one of the typical plants of the Province of East Nusa Tenggara,  Indonesia whose distribution includes the islands of Timor, Alor, Wetor, Flores, Adonara, Lomblen, and Pantar. The best land for the growth of E. urophylla is an area with rainfall above 1000 mm every year. E. urophylla dominate the island of Timor hence the potential to absorb carbon and store it in biomass as part of climate change mitigation. This study aims to determine the allometric equation model to predict the potential of E. urophylla stem biomass. Calculation of the amount of stem biomass based on allometric equations is an analytical method used in this study. The sample trees used in equation modeling is 100 trees as a result of the inventory. The equations that can be used to estimate the biomass potential of the stem of  E. urophylla in Timor Island were ln  = -2.12 + 2.472 ln ( ) and (R2= 0.98); ln  = -3.617 + 1.046 ln  and (R2= 0.99); and ln  = -3.510 + 2.157 ln ( ) + 0.983 ln  and (R2= 0.99). The stem biomass potential with the model I amounting to 276.877 tons ha-1, model II of 279.671 tons ha-1, and model III of 280.209 tons ha-1.

Author Biography

Melewanto Patabang, Sekolah Vokasi Institut Pertanian Bogor
Naskah ini belum pernah dipublikasikan pada jurnal lain

References

Achmad E, Jaya INS, Saleh MB, Kuncahyo B. 2013. Biomass estimation using ALOS PALSAR for identification of lowland forest transition ecosystem in Jambi Province. Journal of Tropical Forest Management. vol 19(2): 145–155. doi: https://doi.org/10.7226/jtfm.19.2.145.

Akbar A. 2012. Persamaan alometrik untuk menduga kandungan karbon jenis meranti (Shorea teysmaniana) di hutan alam rawa gambut Kalimantan Tengah (Allometric equations for predicting carbon contents of shorea teysmaniana in peat swamp Natural Forest Central Kalimantan). Jurnal Penelitian Sosial dan Ekonomi Kehutanan. vol 9(1): 1–11. doi: https://doi.org/10.20886/jpsek.2012.9.1.1-11.

Alloisio I, Borghesi S. 2019. Climate change mitigation. In: Leal Filho W, Azeiteiro U, Azul A, Brandli L, Özuyar P, Wall T. (eds) climate action. Encyclopedia of the UN Sustainable Development Goals. Cam: Springer. p. 57

Basuki TM, van Laake PE, Skidmore AK, Hussin YA. 2009. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Journal Forest Ecology and Management. vol 257: 1684–1694. doi: https://doi.org/10.1016/j.foreco.2009.01.027.

Brown S. 1997. Estimating Biomass and biomass change of tropical forest. FAO Forestry Paper. Urbana: FAO. p. 1–55.

Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Folster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson bw, Ogawa H, Puig H, Riéra B, Yamakura T. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia. vol 145: 87–99. doi: https://doi.org/10.1007/s00442-005-0100-x.

Chave J, Mechain MR, Burquez A, Chidumayo E, Colgan MS, Delitti WBC, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M, Yrizar AM, Mugasha WA, Landau HCM, Mencuccini M, Nelson BW, Ngomanda A, Nogueira EM, Malavassi EO, Pelissier R, Ploton P, Ryan CM, Saldarriaga JG, Vieilledent G. 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology. vol 20: 3177–3190. doi: https://doi.org/10.1111/gcb.12629.

CIFOR. 2010. Pedoman CIFOR tentang hutan, perubahan iklim dan REDD (CIFOR guide on forest, climate change and REDD). Bogor: CIFOR. hal. 4.

Devine WD, Footen PW, Harrison RB, Terry TA, Harrington CA, Holub SM, Gould PJ. 2013. Estimating tree biomass, carbon, and nitrogen in two vegetation control treatments in an 11-year-Old Douglas-Fir plantation on a highly productive site. [Research Paper]. Estacada: United States Department of Agriculture Forest Service Pacific. p. 1.

Elias, Wistara NJ. 2009. Metode estimasi massa karbon pohon Jeunjing (Paraserianthes falcataria L. Nielsen) di Hutan Rakyat. Journal of Tropical Forest Management. vol 15(2): 75–82.

Erdene-Ochir T, Ishiguri F, Nezu I, Tumenjargal B, Baasan B, Chultem G, Ohshima J, Yokota, S. 2020. Utilization potential of naturally regenerated Mongolian Betula platyphylla wood based on growth characteristics and wood properties. Silva Fenn. vol 54(3): 1-16. doi: https://doi.org/10.14214/sf.10284.

Fonseca W, Alice FE, Rey-Benayas JM. 2011. Carbon accumulation in aboveground and belowground biomass and soil of different age native forest plantations in the humid tropical lowlands of Costa Rica. New Forests. vol 43: 197–211. doi: https://doi.org/10.1016/j.foreco.2011.06.036.

Forrester DI, Tachauer IHH, Annighoefer P, Barbeito I, Pretzsch H, Peinado RR, Stark H, Vacchiano, G, Zlatanov T, Chakraborty T, Saha S, Sileshi GW. 2017. Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. Journal Forest Ecology and Management. vol 396: 160-175. doi: https://doi.org/10.1016/j.foreco.2017.04.011.

Genet A, Auty D, Achim A, Bernier M, Pothier D, Cogliastro A. 2013. Consequences of faster growth for wood density in northern red oak (Quercus rubra Liebl.). Forestry. vol 86(1): 99-110. doi: https://doi.org/10.1093/forestry/cps057.

Greenwood S, Ruiz‐Benito P, Martínez‐Vilalta J, Lloret F, Kitzberger T, Allen CD, Fensham R, Laughlin DC, Kattge J, Bönisch G, Kraft NJ. 2017. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecology Letters. vol 20(4): 539-553. doi: https://doi.org/10.1111/ele.12748.

Grman E, Lau JA, Schoolmaster Jr DR, Gross KL. 2010. Mechanisms contributing to stability in ecosystem function depend on the environmental context. Ecology letters. vol 13(11): 1400-1410. doi: https://doi.org/10.1111/j.1461-0248.2010.01533.x.

Henry M, Picard N, Trotta C, Manlay RJ, Valentini R, Bernoux M, Saint-André L. 2011. Estimating tree biomass of sub-Saharan African forests: a review of available allometric equations. Silva Fennica. vol 45(3): 477–569. doi: https://doi.org/10.14214/sf.38.

Hernández-Ramos J, Santos-Posadas HMD, Valdez-Lazalde JR, Tamarit-Urias JC, Ángeles-Pérez G, Hernández-Ramos A, Peduzzi A, Carrero O. 2017. Aboveground biomass and expansion factors in commercial forest plantations of Eucalyptus urophylla S. T. Blake. Agrociencia. vol 51(8): 921–938.

Huy B, Poudel KP, Kralicek K, Hung ND, Khoa PV, Phuong PT, Temesgen H. 2016. Allometric equations for estimating tree aboveground biomass in tropical dipterocarp forests of Vietnam. Journal Forests. vol 7: 180–199. doi: https://doi.org/10.3390/f7080180.

Iida Y, Poorter L, Sterck FJ, Kassim AR, Kubo T, Potts MD, Kohyama TS. 2012. Wood density explains architectural differentiation across 145 co‐occurring tropical tree species. Functional Ecology. vol 26(1): 274-282. doi: https://doi.org/10.1111/j.1365-2435.2011.01921.x

Latifah S, Sulistiyono N. 2013. Carbon Sequestration Potential in aboveground Biomass of Hybrid Eucalyptus Plantation Forest. Journal of Tropical Forest Management. vol 19(1): 54–62. doi: https://doi.org/10.7226/jtfm.19.1.54.

Li LM, Ouyang LJ, Gan SM. 2015. Towards an efficient regeneration protocol for Eucalyptus urophylla. Journal of Tropical Forest Science. vol 27(3): 289–297.

Le Toan T, Quegan S, Davidson MWJ, Balzter H, Paillou P, Papathanassiou K, Plummer S, Rocca F, Saatchi S, Shugart H, Ulander L. 2011. The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle. Remote sensing of environment. vol 115(11): 2850-2860. doi: https://doi.org/10.1016/j.rse.2011.03.020.

Ochieng RM. 2017. The role of forests in climate change mitigation: A discursive institutional analysis of REDD+ MRV. [Dissertation], Wageningen: Wageningen University. p. 115-141. doi: https://doi.org/10.18174/412210.

Ostadhashemi R, Shahraji TR, Roehle H, Limaei SM. 2014. Estimation of biomass and carbon storage of tree plantations in northern Iran. Journal of Forest Science. vol 6(9): 363–371.

Pamoengkas P, van Noordwijk M, Indrawan. 2000. Pendugaan biomassa pohon berdasarkan model fractal branching pada hutan sekunder di Rantau Pandan, Jambi. Jurnal Manajemen Hutan Tropika. vol 6 (1): 1–5.

Picard N, Saint-André L, Henry M. 2012. Manual for building tree volume and biomass allometric equations from field measurement to prediction. Rome: Food and Agriculture Organization of the United Nations. pp. 23–187.

Pretzsch H, Biber P, Schütze G, Kemmerer J, Uhl E. 2018. Wood density reduced while wood volume growth accelerated in Central European forests since 1870. Forest Ecology and Management. vol 429: 589-616. doi: https://doi.org/10.1016/j.foreco.2018.07.045.

Ruslandi, Suprianto T. 2012 Petunjuk Teknis Pengukuran Stok Karbon Pada Plot Contoh National Forest Inventory: Seri Metodologi. Jakarta: UN-REDD Programme Indonesia. hal. 40

Sarmiento RT, Varela RP. 2015. Assessing the biomass potential of major industrial tree plantation species for green energy production. Open Journal of Forestry. vol 5(5): 557–562. doi: https://doi.org/10.4236/ojf.2015.55049.

Saatchi S, Marlier M, Chazdon RL, Clark DB, Russell AE. 2011. Impact of spatial variability of tropical forest structure on radar estimation of aboveground biomass. Remote Sensing of Environment. vol 115(11): 2836-2849. doi: https://doi.org/10.1016/j.rse.2010.07.015.

Stape JL, Binkley D, Ryan MG. 2008. Production and carbon allocation in a clonal Eucalyptus plantation with water and nutrient manipulations. Journal of Forest Ecology and Management. vol 255(3-4): 920–930. doi: https://doi.org/10.1016/j.foreco.2007.09.085.

Sutaryo D. 2009. Penghitungan Biomassa: Sebuah pengantar untuk studi karbon dan perdagangan karbon. Bogor: Wetlands International Indonesia Programme. hal. 5

Vahedi AA, Mataji A, Babayi-Kafaki S, Eshaghi-Rad J, Hodjati SM, Djomo A. 2014. Allometric equations for predicting aboveground biomass of beech-hornbeam stands in the Hyrcanian forests of Iran. Journal of Forest Science. vol 60(6): 236–247. doi: https://doi.org/10.17221/39/2014-JFS.

Widyasari NAE, Saharjo BH, Solichin, Istomo. 2010. Pendugaan biomassa dan potensi karbon terikat di atas permukaan tanah pada hutan rawa gambut bekas terbakar di Sumatera Selatan. Jurnal Ilmu Pertanian Indonesia. vol 15(1): 41–49.

Yuniati D, Kurniawan H. 2013. Persamaan alometrik biomassa dan karbon untuk pendugaan simpanan karbon dalam mendukung upaya konservasi Savana Corypha utan. Jurnal Penelitian Sosial dan Ekonomi Kehutanan. vol 10(2): 75–84. doi: https://doi.org/10.20886/jpsek.2013.10.2.75-84.

Yusuf M, Sulistyawati E, Suhaya Y. 2014. Distribusi Biomassa di Atas dan Bawah Permukaan dari Surian (Toona sinensis Roem.). Jurnal Matematika dan Sains. vol 19(2): 69-75.

Published
2020-06-30
Section
Research Articles
Abstract viewed = 618 times