Synergism of Phage фPT1b and Antibiotics for Reducing Infection of Escherichia coli

  • Erlia Narulita Universitas Jember (SCOPUS ID: 56521650500)
    (ID)
  • Gerda Permata Aji Universitas Jember
    (ID)
  • Bevo Wahono National Taiwan Normal University
    (TW)
  • Siti Murdiyah Universitas Jember
    (ID)
  • Ria Yulian Universitas Jember
    (ID)

Abstract

Foodborne disease caused by Escherichia coli contamination is increasing every year. It also followed by elevating of drug-resistance of E. coli. Bacteriophage can be an alternative for therapy infection.  This study aimed to determine synergism effect of bacteriophage ϕPT1b which has a high rate virulence to E. coli and phage-antibiotics (tetracycline and amoxicillin) synergy. The indigenous bacteria isolates were KR, MJ, KP, PT, PR. Five bacteriophages used namely ϕKR1b, ϕKR2, ϕPT1a, ϕPT1b, and ϕMJ1b. Virulence test was used to determine the ability of each phage in reducing E. coli. Treatment to examine synergism of phage ϕPT1b and antibiotics were P1: amoxicillin, P2: ϕPT1b, P3: ϕPT1b + Amx = 1:1, P4 : ϕPT1b + Amx = 2:1, P5: ϕPT1b + Amx = 1:2, P6 : tetracycline, P2: ϕPT1b, P7: ϕPT1b + Tet = 1:1, P8 : ϕPT1b + Tet = 2:1, and P9: ϕPT1b + Tet = 1:2. The virulence test showed that isolate ϕPT1a with 106 CFU/ml had the highest ability in reducing E. coli. While, the result of synergism test indicated that the synergism of bacteriophage and antibiotics differ significantly (P ≤ 0.05). The best ratios of synergism were 1:1 (ϕPT1b+tetracycline) and 2:1 (ϕPT1b+amoxicilline). In summarize, phage-antibiotic synergy (ϕPT1b with tetracycline/amoxicilline) can reduce the level of antibiotic resistance in isolated E. coli.

References

Ameme DK, Abdulai M, Adjei EY, Afari EA, Nyarko KM, Asante D, Kye-Duodu G, Abbas M, Sackey S, Wurapa F. 2016. Foodborne disease outbreak in a resource-limited setting: a tale of missed opportunities and implications for response. Pan African Medical Journal. vol 23(1): 1-9. doi: https://doi.org/10.11604/pamj.2016.23.69.7660.

Andersson DI, Hughes D. 2010. Antibiotic resistance and its cost: is it possible to reverse resistance?. Nature Reviews Microbiology. vol 8(4): 260-271. doi: https://doi.org/10.1038/nrmicro2319.

Andersson DI, Hughes D. 2014. Microbiological effects of sublethal levels of antibiotics. Nature Reviews Microbiology. vol 12(7): 465-478. doi: https://doi.org/10.1038/nrmicro3270.

Askora A, Kawasaki T, Usami S, Fujie M, Yamada T. 2009. Host Recognition and Integration of Filamentous Phage ϕRSM in the Phytopathogen, Ralstonia solanacearum. Virology. vol 384(1): 69-76. doi: https://doi.org/10.1016/j.virol.2008.11.007.

Bhardwaj N, Bhardwaj SK, Deep A, Dahiya S, Kapoor S. 2015. Lytic bacteriophages as biocontrol agents of foodborne pathogens. Asian journal of animal and veterinary advances. vol 10(11): 708-723. doi: http://dx.doi.org/10.3923/ajava.2015.708.723.

Blount ZD. 2015. The natural history of model organisms: The unexhausted potential of E. coli. Elife. vol 4: 1-12. doi: http://dx.doi.org/10.7554/eLife.05826.001.

Brown ED, Wright GD. 2016. Antibacterial drug discovery in the resistance era. Nature. vol 529(7586): 336-343. doi: https://doi.org/10.1038/nature17042.

Buana EOGHN, Wardani AK. 2013. Isolasi Bakteriofag Litik Sebagai Agen Biosanitasi Pada Proses Pelisisan Bakteri Pembentuk Biofilm. Jurnal Pangan dan Agroindustri. vol 2(2): 36-42.

Caine LA, Nwodo UU, Okoh AI, Ndip RN, Green E. 2014. Occurrence of virulence genes associated with diarrheagenic Escherichia coli isolated from raw cow’s milk from two commercial dairy farms in the Eastern Cape Province, South Africa. International Journal of Environmental Research and Public Health. vol 11(11): 11950-11963. doi: https://doi.org/10.3390/ijerph111111950.

Comeau AM, Tétart F, Trojet SN, Prère MF, Krisch HM. 2007. Phage-Antibiotic Synergy (PAS): β-Lactam and quinolone antibiotics stimulate virulent phage growth. Plos One. vol 2(8): 1-4. doi: https://dx.doi.org/10.1371%2Fjournal.pone.0000799.

de Freitas Neto OC, Penha Filho RAC, Barrow P, Berchieri Junior A. 2010. Sources of human non-typhoid salmonellosis: a review. Brazilian Journal of Poultry Science. vol 12(1): 1-11. doi: https://doi.org/10.1590/S1516-635X2010000100001.

Golberg D, Kroupitski Y, Belausov E, Pinto R, Sela S. 2011. Salmonella typhimurium internalization is variable in leafy vegetables and fresh herbs. International journal of food microbiology. vol 145(1): 250-257. doi: https://doi.org/10.1016/j.ijfoodmicro.2010.12.031.

Golkar Z, Bagasra O, Pace DG. 2014. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis. The Journal of Infection in Developing Countries. vol 8(2): 129-136. doi: https://doi.org/10.3855/jidc.3573.

Hamdi S, Rousseau GM, Labrie SJ, Tremblay DM, Kourda RS, Slama KB, Moineau S. 2017. Characterization of Two Polyvalent Phages Infecting Enterobacteriaceae. Scientific Reports. vol 7(1): 1-12. doi: https://doi.org/10.1038/srep40349.

Harapas D, Premier R, Tomkins B, Franz P, Ajlouni S. 2010. Persistence of Escherichia coli on injured vegetable plants. International journal of food microbiology. vol 138(3): 232-237. doi: https://doi.org/10.1016/j.ijfoodmicro.2010.01.022.

Humaida R. 2014. Strategy to handle resistance of antibiotics. Jurnal Majority. vol 3(7): 113-120.

Ijabadeniyi OA, Debusho LK, Vanderlinde M, Buys EM. 2011. Irrigation water as a potential preharvest source of bacterial contamination of vegetables. Journal of Food Safety. vol 31(4): 452-461. doi: https://doi.org/10.1111/j.1745-4565.2011.00321.x.

Kamal F, Dennis JJ. 2015. Burkholderia cepacia complex phage-antibiotic synergy (PAS): antibiotics stimulate lytic phage activity. Applied and environmental microbiology. vol 81(3): 1132-1138. doi: 10.1128/AEM.02850-14.

Lee H, Ku HJ, Lee DH, Kim YT, Shin H, Ryu S, Lee JH. 2016. Characterization and Genomic Study of the Novel Bacteriophage HY01 Infecting Both Escherichia coli O157:H7 and Shigella flexneri: Potential as a Biocontrol Agent in Food. Plos One. vol 11(12): 1-21. doi: https://doi.org/10.1371/journal.pone.0168985.

Magnone JP, Marek PJ, Sulakvelidze A, Senecal AG. 2013. Additive approach for inactivation of Escherichia coli O157: H7, Salmonella, and Shigella spp. on contaminated fresh fruits and vegetables using bacteriophage cocktail and produce wash. Journal of food protection. vol 76(8): 1336-1341. doi: https://doi.org/10.4315/0362-028X.JFP-12-517.

Mohammadpour H, Berizi E, Hosseinzadeh S, Majlesi M, Zare M. 2018. The prevalence of Campylobacter spp. in vegetables, fruits, and fresh produce: a systematic review and meta-analysis. Gut pathogens. vol 10(1): 1-12. doi: https://doi.org/10.1186/s13099-018-0269-2.

Narulita E, Sulistyorini I, Aji GP, Iqbal M, Murdiyah S. Isolation and characterization of bacteriophage in controlling Escherichia coli in Jember Area, Indonesia. 2018. Asian Journal of Microbiology, Biotechnology, and Environmental Sciences. vol 20(2): 439-444.

Oliveira M, Usall J, Viñas I, Solsona C, Abadias M. 2011. Transfer of Listeria innocua from contaminated compost and irrigation water to lettuce leaves. Food microbiology. vol 28(3): 590-596. doi: https://doi.org/10.1016/j.fm.2010.11.004.

Ponniah J, Robin T, Paie MS, Radu S, Ghazali FM, Kqueen CY, Nishibuchi M, Nakaguchi Y, Malakar PK. 2010. Listeria monocytogenes in raw salad vegetables sold at retail level in Malaysia. Food Control. vol 21(5): 774-778. doi: https://doi.org/10.1016/j.foodcont.2009.09.008

Ranjbar R, Hosseini MJ, Kafashian A, Farshad SH. 2010. An outbreak of shigellosis due to Shigella flexneri serotype 3a in a prison in Iran. Archives of Iranian Medicine. vol 13(5): 413-416. doi: https://dx.doi.org/010135/AIM.008.

Raya RR, Oot RA, Moore-Maley B, Wieland S, Callaway TR, Kutter EM, Brabban AD. 2011. Naturally resident and exogenously applied T4-like and T5-like bacteriophages can reduce Escherichia coli O157: H7 levels in sheep guts. Bacteriophage. vol 1(1): 15-24. doi: https://doi.org/10.4161/bact.1.1.14175.

Sfeir MM. 2018. Burkholderia cepacia complex infections: more complex than the bacterium name suggest. Journal of Infection. vol 77(3): 166-170. doi: https://doi.org/10.1016/j.jinf.2018.07.006.

Sidik KR, Lukman DW, Wibawan IWT. 2016. Cemaran Escherichia coli pada Tepung Telur yang diimpor Melalui Pelabuhan Tanjung Priok, dan Resistensinya Terhadap Antibiotik. Jurnal Veteriner. vol 17(2): 235-245. doi: https://doi.org/10.19087/jveteriner.2016.17.2.235.

Tagliaferri TL, Jansen M, Horz HP. 2019. Fighting pathogenic bacteria on two fronts: Phages and antibiotics as combined strategy. Frontiers in Cellular and Infection Microbiology. vol 9: 1-12. doi: https://doi.org/10.3389/fcimb.2019.00022.

Teng-Hern TL, Kok-Gan C, Han LL. 2014. Application of Bacteriophage in Biocontrol of Major Foodborne Bacterial Pathogens. Journal of Molecular Biology and Molecular Imaging. vol 1(1): 2471-0237.

Tirziu E, Cumpanasoiu C, Gros RV, Seres M. 2011. Yersinia enterocolitica monographic study. Scientific Papers Animal Science and Biotechnologies. vol 44(2): 144-149.

Torres-Barceló C, Arias-Sánchez FI, Vasse M, Ramsayer J, Kaltz O, Hochberg ME. 2014. A window of opportunity to control the bacterial pathogen Pseudomonas aeruginosa combining antibiotics and phages. PloS one. vol 9(9): 1-7. doi: https://doi.org/10.1371/journal.pone.0106628.

Uzeh RE, Adepoju A. 2013. Incidence and survival of Escherichia coli O157: H7 and Listeria monocytogenes on salad vegetables. International food research journal. vol 20(4): 1921-1925.

Quinlan JJ. 2013. Foodborne illness incidence rates and food safety risks for populations of low socioeconomic status and minority race/ethnicity: a review of the literature. International journal of environmental research and public health. vol 10(8): 3634-3652. doi: https://doi.org/10.3390/ijerph10083634.

Verhoeff-Bakkenes L, Jansen HAPM, In't Veld PH, Beumer RR, Zwietering MH, Van Leusden FM. 2011. Consumption of raw vegetables and fruits: a risk factor for Campylobacter infections. International journal of food microbiology. vol 144(3): 406-412. doi: https://doi.org/10.1016/j.ijfoodmicro.2010.10.027.

Xanthopoulos V, Tzanetakis N, Litopoulou-Tzanetaki E. 2010. Occurrence and characterization of Aeromonas hydrophila and Yersinia enterocolitica in minimally processed fresh vegetable salads. Food Control. vol 21(4): 393-398. doi: https://doi.org/10.1016/j.foodcont.2009.06.021.

Published
2020-06-30
Section
Research Articles
Abstract viewed = 374 times