Chromium(VI) Heavy Metal Biosorption in Citarum River Water Sample Using Saccharomyces cerevisiae and Rhizopus oryzae Biomass

  • Suci Rizki Nurul Aeni Sekolah Tinggi Ilmu Kesehatan Rajawali
  • Ni'matul Murtafi'ah Teknologi Laboratorium Medik, Sekolah Tinggi Ilmu Kesehatan Rajawali
    (ID)
  • Handarini Handarini Sekolah Tinggi Ilmu Kesehatan Rajawali

Abstract

The Citarum River was regarded as the World’s dirtiest river in 2018, characterized by a Basin situated adjacent to several textile and electroplating industries. Hexavalent chromium metal (Cr6+) is a toxic, carcinogenic heavy metal found in the wastes of these industries. Furthermore, biosorption with biological adsorbents, including Saccharomyces cerevisiae and Rhizopus oryzae, is an alternative method for treating water polluted with heavy metals. This study therefore aims to adsorb Cr6 + heavy metals from Citarum River water using S. cerevisiae and R. oryzae biomass in two locations: Nanjung and Pangauban, with various biomass concentration and stirring speeds. For this study, 0.25, 0.5, and 0.75 g of R. oryzae suspension, as well as 250, 500, and 750 µ of S. cerevisiae were used as adsorbent, while rotated at speeds of 250 rpm, 750 rpm and 1500 rpm. Subsequently, the Cr6 + metal content was measured using a UV-Vis spectrophotometer at a wavelength of 525 nm, and calculated based on a standard curve. The results showed S. cerevisiae and R. oryzae are able to reduce the levels of Cr6+ in Citarum river water. The most reduction was obtained with the highest concentration of the adsorbents, 750 µ for S. cerevisiae and 0.75 g for R. oryzae, at the speed of 1500 rpm. S. cerevisiae and R. oryzae have great potential as biosorbents for the in situ remediation of Citarum River contaminated with heavy metals.

References

Abbas SH, Ismail IM, Mostafa TM, Sulaymon AH. 2014. Biosorption of heavy metals: a review. Journal of Chemical Science and Technology. vol 3(4): 74–102.

Ameri A, Tamjidi S, Dehghankhalili F, Farhadi A, Saati MA. 2020. Application of algae as low cost and effective bio-adsorbent for removal of heavy metals from wastewater: a review study. Environmental Technology Reviews. vol 9(1): 85-110. doi: https://doi.org/10.1080/21622515.2020.1831619.

Anirudhan TS, Sreekumari SS. 2011. Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. Journal of Environmental Sciences. vol 23(12): 1989-1998. doi: https://doi.org/10.1016/S1001-0742(10)60515-3.

Ayangbenro AS, Babalola OO. 2017. A new strategy for heavy metal polluted environments: a review of microbial biosorbents. International Journal of Environmental Research and Public Health. vol 14(1): 1–16. doi: https://doi.org/10.3390/ijerph14010094.

Ayob A, Santiagoo R, Amneera WA, Ismail N, Abdullah AZ. 2016. Ultrasonic-assisted synthesis of reactive carboxymethyl cellulose stabilized nano zero-valent iron and its application for removal of Cr6+ and Cu2+ ions. Environment Protection Engineering. vol 42(2): 55–79. doi: https://doi.org/10.5277/epe160204.

Badan Pusat Statistik Provinsi Jawa Barat. 2016. Jumlah industri besar sedang menurut subsektor industri menurut golongan industri di Jawa Barat, 2010-2014. Bandung: BPS Provinsi Jawa Barat, Indonesia. https://jabar.bps.go.id/.

Bakircioglu D, Ucar G, Kurtulus YB. 2011. Coliform bacteria immobilized on titanium dioxide nanoparticles as a biosorbent for trace lead preconcentration followed by atomic absorption spectrometric determination. Microchimica Acta. vol 174(3-4): 367–374. doi: https://doi.org/10.1007/s00604-011-0630-3.

Bennett RM, Cordero PRF, Bautista GS, Dedeles GR. 2013. Reduction of hexavalent chromium using fungi and bacteria isolated from contaminated soil and water samples. Chemistry and Ecology. vol 29(4): 320-328. doi: https://doi.org/10.1080/02757540.2013.770478.

Chatterjee SK, Bhattacharjee I, Chandra G. 2010. Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans. Journal of Hazardous Materials. vol 175(1-3): 117-125. doi: https://doi.org/10.1016/j.jhazmat.2009.09.136.

Chojnacka K. 2010. Biosorption and bioaccumulation–the prospects for practical applications. Environment International. vol 36(3): 299–307. doi: https://doi.org/10.1016/j.envint.2009.12.001.

Das J, Sarkar A, Sil PC. 2015. Hexavalent chromium induces apoptosis in human liver (HepG2) cells via redox imbalance. Toxicology Reports. vol 2: 600–608. doi: https://doi.org/10.1016/j.toxrep.2015.03.013.

do Nascimento JM, de Oliveira JD, Rizzo ACL, Leite SGF. 2019. Biosorption Cu (II) by the yeast Saccharomyces cerevisiae. Biotechnology Reports. vol 21: 1–7. doi: https://doi.org/10.1016/j.btre.2019.e00315.

Dhankhar R, Hooda A. 2011. Fungal biosorption–an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environmental Technology. vol 32(5): 467–491. doi: https://doi.org/10.1080/09593330.2011.572922.

Escudero LB, Quintas PY, Wuilloud RG, Dotto GL. 2019. Recent advances on elemental biosorption. Environmental Chemistry Letters. vol 17(1): 409–427. doi: https://doi.org/10.1007/s10311-018-0816-6.

Espinoza-Sánchez MA, Arévalo-Niño K, Quintero-Zapata I, Castro-González I, Almaguer-Cantú V. 2019. Cr (VI) adsorption from aqueous solution by fungal bioremediation based using Rhizopus sp. Journal of Environmental Management. vol 251: 1–8. doi: https://doi.org/10.1016/j.jenvman.2019.109595.

Farhan SN, Khadom AA. 2015. Biosorption of heavy metals from aqueous solutions by Saccharomyces cerevisiae. International Journal of Industrial Chemistry. vol 6(2): 119–130. doi: https://doi.org/10.1007/s40090-015-0038-8.

Fasya AHZ. 2018. The incidence of dermatitis analysis based on individual characteristics of metal plating workers in Sidoarjo. Jurnal Kesehatan Lingkungan. vol 10(2): 149–158. doi: http://dx.doi.org/10.20473/jkl.v10i2.2018.149-158.

Favaro L, Jansen T, van Zyl WH. 2019. Exploring industrial and natural Saccharomyces cerevisiae strains for the bio-based economy from biomass: the case of bioethanol. Critical Reviews in Biotechnology. vol 39(6): 800–816. doi: https://doi.org/10.1080/07388551.2019.1619157.

Fu YQ, Li S, Zhu HY, Jiang R, Yin LF. 2012. Biosorption of copper (II) from aqueous solution by mycelial pellets of Rhizopus oryzae. African Journal of Biotechnology. vol 11(6): 1403–1411. doi: https://doi.org/10.5897/AJB11.2809.

Garg UK, Kaur MP, Garg VK, Sud D. 2007. Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. Journal of Hazardous Materials. vol 140(1–2): 60–68.

Gharieb MM, Al-Fakih AA, Ali MI. 2014. Biosorption of Pb (II) and Co (II) ions from aqueous solutions using pretreated Rhizopus oryzae (bread mold). Arabian Journal for Science and Engineering. vol 39(4): 2435–2446. doi: https://doi.org/10.1007/s13369-013-0784-x.

Gupta A, Yadav R, Devi P. 2011. Removal of hexavalent chromium using activated coconut shell and activated coconut coir as low cost adsorbent. The IIOAB Journal. vol 2(3): 8–12.

Gürel L. 2017. Applications of the biosorption process for nickel removal from aqueous solutions–A review. Chemical Engineering Communications. vol 204(6): 711–722. doi: https://doi.org/10.1080/00986445.2017.1306698.

Igberase E, Osifo P, Ofomaja A. 2018. Adsorption of metal ions by microwave assisted grafting of cross‐linked chitosan beads. Equilibrium, isotherm, thermodynamic and desorption studies. Applied Organometallic Chemistry. vol 32(3): 1–14. doi: https://doi.org/10.1002/aoc.4131.

Jabbo JN, Ugodulunwa FXO, Yusuf UM, Maiauduga NA, Gin NS, Usman AM, Gani SJ, Dung SG. 2016. Water Quality Assessment of Some Selected Hand Dug Wells and a Borehole in North Eastern Parts of Bauchi Metropolis, Nigeria. Journal of Environment and Earth Science. vol 6(6): 137–145.

Kementerian Agama RI. 2019a. Terjemahan Al Qur’an Surat Ali 'Imran ayat 91. https://quran.kemenag.go.id/.

Kementerian Agama RI. 2019b. Terjemahan Al Qur’an Surat QS. Ar-Rum ayat 41. https://quran.kemenag.go.id/.

Kementerian Agama RI. 2019c. Terjemahan Al Qur’an Surat QS. Al-Ahzab ayat 72. https://quran.kemenag.go.id/.

Kılıç Z, Atakol O, Aras S, Cansaran-Duman D, Emregul E. 2014. Biosorption properties of zinc (II) from aqueous solutions by Pseudevernia furfuracea (L.) Zopf. Journal of the Air & Waste Management Association. vol 64(10): 1112–1121. doi: https://doi.org/10.1080/10962247.2014.926299.

Kim JH, Kang JC. 2016. Oxidative stress, neurotoxicity, and metallothionein (MT) gene expression in juvenile rock fish Sebastes schlegelii under the different levels of dietary chromium (Cr6+) exposure. Ecotoxicology and Environmental Safety. vol 125: 78–84. doi: https://doi.org/10.1016/j.ecoenv.2015.12.001.

Komarawidjaja W. 2016. Sebaran limbah cair industri tekstil dan dampaknya di beberapa desa Kecamatan Rancaekek Kabupaten Bandung. Jurnal Teknologi Lingkungan. vol 17(2): 118–125. doi: https://doi.org/10.29122/jtl.v17i2.1045.

Kozlowski H, Kolkowska P, Watly J, Krzywoszynska K, Potocki S. 2014. General aspects of metal toxicity. Current Medicinal Chemistry. vol 21(33): 3721–3740. doi: https://doi.org/10.2174/0929867321666140716093838.

Lazo P. 2009. Determination of Cr (VI) in environmental samples evaluating Cr (VI) impact in a contaminated area. Journal of International Environmental Application & Science. vol 4(2): 207–213.

Lembaga Ilmu Pengetahuan Indonesia. 2019. Upaya LIPI mewujudkan pemulihan Citarum. Bandung: Lembaga Ilmu Pengetahuan Indonesia (LIPI). http://lipi.go.id/.

Li D, Han J. 2019. Homogeneous photocatalytic iron slag reduction Cr6+ from chromium wastewater containing high-salt in Constructed Wetland. Polish Journal of Environmental Studies. vol 28(5): 3745–3752. doi: https://doi.org/10.15244/pjoes/94815.

Li Y, Liu J, Yuan Q, Tang H, Yu F, Lv X. 2016. A green adsorbent derived from banana peel for highly effective removal of heavy metal ions from water. Rsc Advances. vol 6(51): 45041–45048. doi: https://doi.org/10.1039/C6RA07460J.

Luo JM, Xiao XIAO, Sheng-lian LUO. 2010. Biosorption of cadmium (II) from aqueous solutions by industrial fungus Rhizopus cohnii. Transactions of nonferrous metals society of China. vol 20(6): 1104–1111. doi: https://doi.org/10.1016/S1003-6326(09)60264-8.

Mahmoud MS, Mohamed SA. 2017. Calcium alginate as an eco-friendly supporting material for Baker’s yeast strain in chromium bioremediation. HBRC Journal. vol 13(3): 245–254. doi: https://doi.org/10.1016/j.hbrcj.2015.06.003.

Paramita RW. 2017. Kandungan logam berat kadmium (Cd) dan kromium (Cr) di air permukaan dan sedimen: studi kasus Waduk Saguling Jawa Barat. Jurnal Reka Lingkungan. vol 5(2): 1–12. doi: https://doi.org/10.26760/rekalingkungan.v5i2.%25p.

Priyanto B. 2019. Penerapan uji hayati dengan Lemna sp. untuk mengkaji kualitas air sungai yang menerima air limbah industri tekstil di Kabupaten Bandung. Jurnal Hidrosfir Indonesia. vol 4(3): 1–7.

Proctor DM, Suh M, Campleman SL, Thompson CM. 2014. Assessment of the mode of action for hexavalent chromium-induced lung cancer following inhalation exposures. Toxicology. vol 325: 160–179. doi: https://doi.org/10.1016/j.tox.2014.08.009.

Putra DM. 2017. Kontribusi industri tekstil dalam penggunaan bahan berbahaya dan beracun terhadap rusaknya sungai Citarum. Jurnal Hukum Lingkungan Indonesia. vol 3(1): 133–152. doi: http://dx.doi.org/10.38011/jhli.v3i1.37.

Rice EW, Baird RB, Eaton AD. 2017. Standard methods for the examination of water and wastewater, 23rd edition. Washington DC: American Public Health Association, American Water Works Association, Water Environment Federation. pp. 3–73.

Sathvika T, Soni A, Sharma K, Praneeth M, Mudaliyar M, Rajesh V, Rajesh N. 2018. Potential application of Saccharomyces cerevisiae and Rhizobium immobilized in multi walled carbon nanotubes to adsorb hexavalent chromium. Scientific Reports. vol 8(1): 1–13. doi: https://doi.org/10.1038/s41598-018-28067-9.

Siddiquee S, Rovina K, Azad SA, Naher L, Suryani S, Chaikaew P. 2015. Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: a review. Journal of Microbial & Biochemical Technology. vol 7(6): 384–395.

Sihombing AK. 2020. Penegakan hukum terhadap pencemaran lingkungan di Sungai Cikijing, Jawa Barat akibat aktivitas industri tekstil PT. Kahatex. Jurnal Hukum Lingkungan Indonesia. vol 7(1): 98–117. doi: http://dx.doi.org/10.38011/jhli.v7i1.209.

Son EB, Poo KM, Mohamed HO, Choi YJ, Cho WC, Chae KJ. 2018. A novel approach to developing a reusable marine macro-algae adsorbent with chitosan and ferric oxide for simultaneous efficient heavy metal removal and easy magnetic separation. Bioresource Technology. vol 259: 381–387. doi: https://doi.org/10.1016/j.biortech.2018.03.077.

Stănilă A, Mihăiescu T, Odagiu A. 2015. Studies Regarding Cytotoxicity of Copper, Lead and Zinc Ions Solutions on Living Saccharomices Cerevisae Cells. ProEnvironment Promediu. vol 8(23): 445–450.

Sumantri A, Rahmani RZ. 2018. Analisis pencemaran kromium (VI) berdasarkan kadar chemical oxygen demand (COD) pada hulu sungai Citarum di Kecamatan Majalaya Kabupaten Bandung Provinsi Jawa Barat. Jurnal Kesehatan Lingkungan Indonesia. vol 19(2): 144–151. doi: https://doi.org/10.14710/jkli.19.2.144-151.

Tahir A, Lateef Z, Abdel-Megeed A, Sholkamy EN, Mostafa AA. 2017. In vitro compatibility of fungi for the biosorption of zinc (II) and copper (II) from electroplating effluent. Current Science. vol 112(4): 839–844.

Vellaichamy B, Periakaruppan P, Nagulan B. 2017. Reduction of Cr6+ from wastewater using a novel in situ-synthesized PANI/MnO2/TiO2 nanocomposite: renewable, selective, stable, and synergistic catalysis. ACS Sustainable Chemistry & Engineering. vol 5(10): 9313–9324. doi: https://doi.org/10.1021/acssuschemeng.7b02324.

Wardani E. 2018. Identifikasi pencemaran logam berat raksa di sungai citarum hulu Jawa Barat. Jurnal Teknik Kimia Indonesia. vol 8(1): 17–23. doi: https://doi.org/10.5614/jtki.2009.8.1.4.

Xie J, Feng N, Wang R, Guo Z, Dong H, Cui H, Wu H, Qiu G, Liu X. 2020. A reusable biosorbent using Ca-Alginate immobilized Providencia vermicola for Pd (II) recovery from acidic solution. Water, Air, & Soil Pollution. vol 231(2): 1–12. doi: https://doi.org/10.1007/s11270-020-4399-z.

Xu M, Yin P, Liu X, Tang Q, Qu R, Xu Q. 2013. Utilization of rice husks modified by organomultiphosphonic acids as low-cost biosorbents for enhanced adsorption of heavy metal ions. Bioresource Technology. vol 149: 420–424. doi: https://doi.org/10.1016/j.biortech.2013.09.075.

Xu X, Xia L, Huang Q, Gu JD, Chen W. 2012. Biosorption of cadmium by a metal-resistant filamentous fungus isolated from chicken manure compost. Environmental Technology. vol 33(14): 1661–1670. doi: https://doi.org/10.1080/09593330.2011.641591.

Zewail TM, Yousef NS. 2014. Chromium ions (Cr6+ & Cr3+) removal from synthetic wastewater by electrocoagulation using vertical expanded Fe anode. Journal of Electroanalytical Chemistry. vol 735: 123–128. doi: https://doi.org/10.1016/j.jelechem.2014.09.002.

Zhang LI, Zhao LI, Yu Y, Chen C. 1998. Removal of lead from aqueous solution by non-living Rhizopus nigricans. Water Research. vol 32(5): 1437–1444.

Published
2020-12-30
Section
Research Articles
Abstract viewed = 669 times