Hematological Response of Tilapia (Oreochromis niloticus) in Laundry Wastewater

  • Saparuddin Saparuddin Sembilanbelas November Kolaka University
    (ID) http://orcid.org/0000-0002-1825-0097
  • Yanti Yanti Sembilanbelas November Kolaka University
  • Salim Salim Sembilanbelas November Kolaka University
  • Harish Muhammad Leibniz-Institute of Freshwater Ecology and Inland Fisheries


The high concentration of detergent in the aquatic ecosystem potentially affects the fish's physiological condition by disrupting the respiration process and changing the concentration of blood components and chemistry. This study aimed to determine the condition of the hematological parameters of tilapia (Oreochromis niloticus) exposed to wastewater from the laundry industry. Each treatment was stocked with five fish per aquarium (50x30x30 cm). This study used a completely randomized design (CRD) technique with treatments include P0 (0%) as a control, P1 (1%), P2 (2%), P3 (3%), P4 (4%), and P5 (5%) with each treatment exposed to a specific concentration of wastewater and residues. The results showed that the hemoglobin levels of treatments decreased, with the lowest mean of hemoglobin level found in the P2 (7.05 gr%), and the lowest concentration on the 30th day was 7.71 gr%. There were no significant effects of wastewater on erythrocytes and leucocytes number among treatments (P > 0.05). While there were increasing hematocrit levels, the largest mean level was found in the P4 treatment with a value of 24.11 gr%, and the largest mean on the 20th day of observation showed a value of 23.51 gr%. Wastewater from the laundry industry can affect tilapia's hematological condition by decreasing the hemoglobin concentration and increasing the hematocrit levels above the normal condition.

Author Biography

Saparuddin Saparuddin, Sembilanbelas November Kolaka University
Nama saya Saparuddin, Dosen Program Studi Pendidikan Biologi FKIP Universitas Sembilanbelas November Kolaka, Sultra. Pangkat saya Asisten Ahli.


Abdel-Baki AS, Dkhil MA, Al-Quraishy S. 2011. Bioaccumulation of some heavy metals in tilapia fish relevant to their concentration in water and sediment of Wadi Hanifah, Saudi Arabia. African Journal of Biotechnology. vol 10(13): 2541–2547.

Abdel-Khalek AA, Elhaddad E, Mamdouh S, Marie MAS. 2016. Assessment of metal pollution around sabal drainage in River Nile and its impacts on bioaccumulation level, metals correlation and human risk hazard using Oreochromis niloticus as a bioindicator. Turkish Journal of Fisheries and Aquatic Sciences. vol 16(2): 227–239. doi: https://doi.org/10.4194/1303-2712-v16_2_02.

Adewoye SO. 2010. Effects of detergent effluent discharges on the aspect of water quality of Asa River, Ilorin, Nigeria. Agriculture and Biology Journal of North America. vol 1(4): 731–736.

Atkins ME, Benfey TJ. 2008. Effect of acclimation temperature on routine metabolic rate in triploid salmonids. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. vol 149(2): 157–161. doi: https://doi.org/10.1016/j.cbpa.2007.11.004.

Authman MM, Zaki MS, Khallaf EA, Abbas HH. 2015. Use of fish as bio-indicator of the effects of heavy metals pollution. Journal of Aquaculture Research & Development. vol 6(4): 1–13. doi: http://dx.doi.org/10.4172/2155-9546.1000328.

Chapman LJ, Chapman CA, Nordlie FG, Rosenberger AE. 2002. Physiological refugia: swamps, hypoxia tolerance and maintenance of fish diversity in the Lake Victoria region. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. vol 133(3): 421–437. doi: https://doi.org/10.1016/S1095-6433(02)00195-2.

Chaves-Pozo E, García-Ayala A, Cabas I. 2018. Effects of sex steroids on fish leukocytes. Biology. vol 7(1): 1–21. doi: https://doi.org/10.3390/biology7010009.

Davis AK, Maney DL, Maers JC. 2008. The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Methods in Ecology and Evolution. vol 9(6): 1556–1568. doi: https://doi.org/10.1111/2041-210X.13020.

Docan A, Dediu L, Cristea V. 2012. Effect of feeding with different dietary protein level on leukocytes population in juvenile Siberian sturgeon, Acipenser baeri Brandt. Archiva Zootechnica. vol 15(4): 59–67.

Eneji IS, Sha'Ato R, Annune PA. 2011. Bioaccumulation of Heavy Metals in Fish (Tilapia zilli and Clarias gariepinus) Organs from River Benue, North-Central Nigeria. Pakistan Journal of Analytical & Environmental Chemistry. vol 12(1): 42–49.

Franke F, Rahn AK, Dittmar J, Erin,N, Rieger JK, Haase D, Samonte-Padilla IE, Lange J, Jakobsen PJ,

Hermida M, Fernández C, Kurtz J, Bakker TCM, Reusch TBH, Kalbe M, Scharsack JP. 2014. In vitro leukocyte response of three-spined sticklebacks (Gasterosteus aculeatus) to helminth parasite antigens. Fish & Shellfish Immunology. vol 36(1): 130–140. doi: https://doi.org/10.1016/j.fsi.2013.10.019.

Franklin PA. 2014. Dissolved oxygen criteria for freshwater fish in New Zealand: a revised approach. New Zealand Journal of Marine and Freshwater Research. vol 48(1): 112–126. doi: https://doi.org/10.1080/00288330.2013.827123.

Gao B, Sharma MM. 2013. A family of alkyl sulfate gemini surfactants. 2. Water–oil interfacial tension reduction. Journal of Colloid and Interface Science. vol 407: 375–381. doi: https://doi.org/10.1016/j.jcis.2013.06.066.

Ghose NC, Saha D, Gupta A. 2009. Synthetic detergents (surfactants) and organochlorine pesticide signatures in surface water and groundwater of greater Kolkata, India. Journal of Water Resource and Protection. Science Research. vol 1(4): 290–298. Doi: https://doi.org/10.4236/jwarp.2009.14036.

Giagnorio M, Amelio A, Grüttner H, Tiraferri A. 2017. Environmental impacts of detergents and benefits of their recovery in the laundering industry. Journal of Cleaner Production. vol 154: 593–601. doi: http://dx.doi.org/10.1016/j.jclepro.2017.04.012.

Goel G, Kaur S. 2012. A study on chemical contamination of water due to household laundry detergents. Journal of Human Ecology. vol 38(1): 65–69. doi: 10.1080/09709274.2012.11906475.

Hassan FM, Al Obaidy AHMJ, Al-Ani RR. 2017. Detection of Detergents (Surfactants) in Tigris River-Baghdad/Iraq. International Journal of Environment & Water. vol 6(2): 1–15.

Hidaka H, Tamano T, Fujimoto T, Machinami T, Oyama T, Horiuchi T, Serpone N. 2010. Binary cationic BDDAC/anionic DoS surfactant systems of variable compositions. mineralization by an advanced oxidation process in aqueous dispersions. Journal of Advanced Oxidation Technologies. vol 13(3): 274–280. doi: https://doi.org/10.1515/jaots-2010-0305.

Hobbs JP, McDonald CA. 2010. Increased seawater temperature and decreased dissolved oxygen triggers fish kill at the Cocos (Keeling) Islands Indian Ocean. Journal of Fish Biology. vol 77(6): 1219–1229. doi: https://doi.org/10.1111/j.1095-8649.2010.02726.x.

Ismail HTH, Mahboub HHH. 2016. Effect of acute exposure to nonylphenol on biochemical, hormonal, and hematological parameters and muscle tissues residues of Nile tilapia; Oreochromis niloticus. Veterinary world. vol 9(6): 616–625. doi: https://dx.doi.org/10.14202%2Fvetworld.2016.616-625.

Ivanković T, Hrenović J. 2010. Surfactants in the environment. Archives of Industrial Hygiene and Toxicology. vol 61(1): 95–110. doi: https://doi.org/10.2478/10004-1254-61-2010-1943.

Krams IA, Suraka V, Rantala MJ, Sepp T, Mierauskas P, Vrublevska J, Krama T. 2013. Acute infection of avian malaria impairs concentration of haemoglobin and survival in juvenile altricial birds. Journal of Zoology. vol 291(1): 34–41. doi: https://doi.org/10.1111/jzo.12043.

Lazado CC, Caipang CMA, Gallage S, Brinchmann MF, Kiron V. 2010. Expression profiles of genes associated with immune response and oxidative stress in Atlantic cod, Gadus morhua head kidney leukocytes modulated by live and heat-inactivated intestinal bacteria. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. vol 155(3): 249–255. doi: https://doi.org/10.1016/j.cbpb.2009.11.006.

Lee JA, Kim JW, Oh SY, Yi SK, Noh I, Ishimatsu A, Kim WS. 2012. Effect of low dissolved oxygen on the oxygen consumption rate and rhythm of the mudskipper Scartelaos gigas (Pisces, Gobiidae). Fisheries Science. vol 78(5): 1013–1022. doi: https://doi.org/10.1007/s12562-012-0536-y.

Łuczyńska J, Paszczyk B, Łuczyński MJ. 2018. Fish as a bioindicator of heavy metals pollution in aquatic ecosystem of Pluszne Lake, Poland, and risk assessment for consumer's health. Ecotoxicology and Environmental Safety. vol 153: 60–67. doi: https://doi.org/10.1016/j.ecoenv.2018.01.057

Maftuch M. 2018. Hematological Analysis of Nile Tilapia (Oreochromis niloticus) and Striped Catfish (Pangasius hypophthalmus) using Hematology Analyzer Tool Software at Fish Breeding Center Jojogan, Tuban, East Java. Research Journal of Life Science. vol 5(2): 107–115. doi: https://doi.org/10.21776/ub.rjls.2018.005.02.4.

Meffe R, de Bustamante I. 2014. Emerging organic contaminants in surface water and groundwater: a first overview of the situation in Italy. Science of the Total Environment. vol 481: 280–295. doi: https://doi.org/10.1016/j.scitotenv.2014.02.053.

Milla S, Depiereux S, Kestemont P. 2011. The effects of estrogenic and androgenic endocrine disruptors on the immune system of fish: a review. Ecotoxicology. vol 20(2): 305–319. doi: https://doi.org/10.1007/s10646-010-0588-7.

Nardocci G, Navarro C, Cortés PP, Imarai M, Montoya M, Valenzuela B, Jara P, Acuña-Castillo C, Fernández R. 2014. Neuroendocrine mechanisms for immune system regulation during stress in fish. Fish & Shellfish Immunology. vol 40(2): 531–538. doi: https://doi.org/10.1016/j.fsi.2014.08.001.

Nivelle R, Gennotte V, Kalala EJK, Ngoc NB, Muller M, Mélard C, Rougeot C. 2019. Temperature preference of Nile tilapia (Oreochromis niloticus) juveniles induces spontaneous sex reversal. PloS One. vol 14(2): 1–19. doi: https://doi.org/10.1371/journal.pone.0212504.

Oğuz AR. 2015. A histological study of the kidney structure of Van fish (Alburnus tarichi) acclimated to highly alkaline water and freshwater. Marine and Freshwater Behaviour and Physiology. vol 48(2): 135–144. doi: https://doi.org/10.1080/10236244.2015.1004838.

Osman AGM. 2012. Biomarkers in Nile tilapia Oreochromis niloticus niloticus (Linnaeus, 1758) to assess the impacts of river Nile pollution: bioaccumulation, biochemical and tissues biomarkers. Journal of Environmental Protection. vol 3(8): 966–977. doi: https://doi.org 10.4236/jep.2012.328112.

Patty SI, Arfah H, Abdul MS. 2015. Zat hara (fosfat, nitrat), oksigen terlarut dan pH kaitannya dengan kesuburan di perairan Jikumerasa, Pulau Buru. Jurnal Pesisir dan Laut Tropis. vol 3(1): 43–50. doi: https://doi.org/10.35800/jplt.3.1.2015.9578.

Rajan DS. 2015. An evaluation of the effect of a detergent on dissolved oxygen consumption rate of Anabas testudineus. International Journal of Fisheries and Aquatic Studies. vol 2(6): 46–48.

Ramachandra TV, Mahapatra DM, Asulabha KS, Varghese S. 2017. Foaming or algal bloom in water bodies of India: remedial measures–restrict phosphate (P) based detergents. [Report]. Bangalore: Energy & Wetlands Research Group, Centre for Ecological Sciences, Indian Institute of Science.

Rebello S, Asok AK, Mundayoor S, Jisha MS. 2014. Surfactants: toxicity, remediation and green surfactants. Environmental chemistry letters. vol 12(2): 275–287. doi: https://doi.org/10.1007/s10311-014-0466-2.

Ribas JLC, Zampronio AR, Silva de Assis HC. 2016. Effects of trophic exposure to diclofenac and dexamethasone on hematological parameters and immune response in freshwater fish. Environmental Toxicology and Chemistry. vol 35(4): 975–982. doi: https://doi.org/10.1002/etc.3240.

Sabilu K. 2010. Dampak toksisitas nikel terhadap kondisi hematologi ikan bandeng Chanos chanos Forsskal, studi lanjut respon fisiologi. Paradigma. vol 14(2): 205–216.

Sadauskas-Henrique H, Sakuragui MM, Paulino MG, Fernandes MN. 2011. Using condition factor and blood variable biomarkers in fish to assess water quality. Environmental Monitoring and Assessment. vol 181(1-4): 29–42. doi: https://doi.org/10.1007/s10661-010-1810-z.

Saparuddin A, Arbain. 2018. Biological test of the laundry industry toxicity of detergents and concentration of hemoglobin in tilapia (Oreochromis niloticus). Proceeding IOP Conference Series: Earth and Environmental Science. December 3-4, 2018. Kolaka: USN Kolaka–ADRI International Conference on Sustainable Coastal–Community Development. vol 382: 3-4.

Satheeshkumar P, Ananthan G, Kumar DS, Jagadeesan L. 2012. Haematology and biochemical parameters of different feeding behaviour of teleost fishes from Vellar estuary, India. Comparative Clinical Pathology. vol 21(6): 1187–1191. doi: https://doi.org/10.1007/s00580-011-1259-7.

Scapigliati G. 2013. Functional aspects of fish lymphocytes. Developmental & Comparative Immunology. vol 41(2): 200–208. doi: https://doi.org/10.1016/j.dci.2013.05.012.

Seriani R, Abessa DMDS, Pereira CD, Kirschbaum AA, Assunção A, Ranzani-Paiva MJT. 2013. Influence of seasonality and pollution on the hematological parameters of the estuarine fish Centropomus parallelus. Brazilian Journal of Oceanography. vol 61(2): 105–111. doi: http://dx.doi.org/10.1590/S1679-87592013000200003.

Siburian AF, Nirmala K, Supriyono E. 2019. Evaluasi penggunaan jenis selter berbeda terhadap respons stres dan kinerja produksi pendederan lobster air tawar Cherax quadricarinatus dalam sistem resirkulasi. Jurnal Riset Akuakultur. vol 13(4): 297-307. doi: http://dx.doi.org/10.15578/jra.13.4.2018.297-307.

Sobrino-Figueroa AS. 2013. Evaluation of oxidative stress and genetic damage caused by detergents in the zebrafish Danio rerio (Cyprinidae). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. vol 165(4): 528–532. doi: https://doi.org/10.1016/j.cbpa.2013.03.026.

Srinet SS, Basak A, Ghosh P, Chatterjee J. 2017. Separation of anionic surfactant in paste form from its aqueous solutions using foam fractionation. Journal of Environmental Chemical Engineering. vol 5(2): 1586–1598. doi: https://doi.org/10.1016/j.jece.2017.02.008.

Sugito S, Nurliana N, Aliza D, Samadi S. 2014. Diferensial leukosit dan ketahanan hidup pada uji tantang Aeromonas hydrophila ikan nila yang diberi stres panas dan suplementasi tepung daun jaloh dalam pakan. Jurnal Kedokteran Hewan. vol 8(2): 158–163.

Sumisha A, Arthanareeswaran G, Thuyavan YL, Ismail AF, Chakraborty S. 2015. Treatment of laundry wastewater using polyethersulfone/polyvinylpyrollidone ultrafiltration membranes. Ecotoxicology and Environmental Safety. vol 121: 174–179. doi: https://doi.org/10.1016/j.ecoenv.2015.04.004.

Tort L. 2011. Stress and immune modulation in fish. Developmental & Comparative Immunology. vol 35(12): 1366–1375. doi: https://doi.org/10.1016/j.dci.2011.07.002.

Tran‐Duy A, van Dam AA, Schrama JW. 2012. Feed intake, growth and metabolism of Nile tilapia (Oreochromis niloticus) in relation to dissolved oxygen concentration. Aquaculture Research. vol 43(5): 730–744. doi: 10.1111/j.1365-2109.2011.02882.x.

Utomo WP, Nugraheni ZV, Rosyidah A, Shafwah OM, Naashihah LK, Nurfitria N, Ullfindrayani IF. 2018. Penurunan Kadar Surfaktan Anionik dan Fosfat dalam Air Limbah Laundry di Kawasan Keputih, Surabaya menggunakan Karbon Aktif. Akta Kimia Indonesia. vol 3(1): 127-140. doi: http://dx.doi.org/10.12962/j25493736.v3i1.3528.

Uzma S, Khan S, Murad W, Taimur N, Azizullah A. 2018. Phytotoxic effects of two commonly used laundry detergents on germination, growth, and biochemical characteristics of maize (Zea mays L.) seedlings. Environmental Monitoring and Assessment. vol 190(11): 1–14. doi: https://doi.org/10.1007/s10661-018-7031-6.

Velisek J, Stara A, Kolarova J, Svobodova Z. 2011. Biochemical, physiological and morfological responses in common carp (Cyprinus carpio L.) after long-term exposure to terbutryn in real environmental concentration. Pesticide Biochemistry and Physiology. vol 100(3): 305–313. doi: https://doi.org/10.1016/j.pestbp.2011.05.004.

Verdia P, Gunaratne HQN, Goh TY, Jacquemin J, Blesic M. 2016. A class of efficient short-chain fluorinated catanionic surfactants. Green Chemistry. vol 18(5): 1234–1239. doi: https://doi.org/10.1039/C5GC02790J.

Yuliani RL, Purwanti E, Pantiwati Y. 2015. Pengaruh Limbah Detergen Industri Laundry terhadap Mortalitas dan Indeks Fisiologi Ikan Nila (Oreochromis niloticus). Prosiding Biologi, Sains, Lingkungan dan Pembelajarannya. Surakarta: FKIP UNS. vol 12(1): 822-828.

Zafalon-Silva B, Zebral YD, Bianchini A, Da Rosa CE, Marins LF, Colares EP, Martinez PE, Bobrowski VL, Robaldo RB. 2017. Erythrocyte nuclear abnormalities and leukocyte profile in the Antarctic fish Notothenia coriiceps after exposure to short-and long-term heat stress. Polar Biology. vol 40(9): 1755–1760. doi: https://doi.org/10.1007/s00300-017-2099-y.

Zainuddin A, Putranto TWC, Irawan B, Soegianto A. 2017. Effect of sub-lethal lead exposure at different salinities on osmoregulation and hematological changes in tilapia, Oreochromis niloticus. Fisheries & Aquatic Life. vol 25(3): 173–185. doi: https://doi.org/10.1515/aopf-2017-0017.

Zuhrawati NA. 2014. Pengaruh peningkatan suhu terhadap kadar hemoglobin dan nilai hematokrit ikan nila (Oreocrhomis niloticus). Jurnal Medika Veterinaria. vol 8(1): 84-86.

Research Articles
Abstract viewed = 823 times