Magainin as an Antiviral Peptide of SARS-CoV-2 Main Protease for Potential Inhibitor: An In Silico Approach

  • Taufik Muhammad Fakih Program Studi Farmasi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Islam Bandung
    (ID) http://orcid.org/0000-0001-7155-4412
  • Mentari Luthfika Dewi Program Studi Farmasi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Islam Bandung
    (ID)
  • Eky Syahroni Program Studi Farmasi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Islam Bandung
    (ID)

Abstract

The new coronavirus (SARS-CoV-2), which caused the global pandemic Coronavirus Disease-2019 (COVID-2019), has infected nearly 206 countries. There is still little information about molecular compounds that can inhibit the development of infections caused by this disease. It is crucial to discover competent natural inhibitor candidates, such as antiviral peptides, because they have a variety of biological activities and have evolved to target biochemical machinery from different pathogens or host cell structures. In silico studies will be carried out, including protein-peptide docking and protein-protein docking, to identify, evaluate, and explore the affinity and molecular interactions of the Magainin-1 and Magainin-2 peptide molecules derived from frog skin (Xenopus laevis) to the main protease macromolecule (Mpro) SARS-CoV-2, and its effect on the ACE-2 receptor (Angiotensin Converting Enzyme-2 Receptor). Protein-peptide docking simulations show that both peptide molecules have a good affinity for the active site area of the SARS-CoV-2 Mpro macromolecule. These results were then confirmed using protein-protein docking simulations to observe the ability of the peptide molecule in preventing attachment to the ACE-2 receptor surface area. In silico studies show that Magainin-2 has the best affinity, with a bond free energy value of −3054.53 kJ/mol. Then the protein-protein docking simulation provided by Magainin-2 prevented the attachment of ACE-2 receptors, with an ACE score of 1697.99 kJ/mol. Thus, through in silico research, the Magainin peptide molecule can be further investigated in the development of new antiviral peptides for the treatment of infectious diseases of COVID-19.

References

Aruleba RT, Adekiya TA, Oyinloye BE, Kappo AP. 2018. Structural studies of predicted ligand binding sites and molecular docking analysis of Slc2a4 as a therapeutic target for the treatment of cancer. International Journal of Molecular Sciences. vol 19(2): 1–15. doi: https://doi.org/10.3390/ijms19020386.

Bellows ML, Floudas CA. 2010. Computational methods for de novo protein design and its applications to the human immunodeficiency virus 1, purine nucleoside phosphorylase, ubiquitin specific protease 7, and histone demethylases. Current Drug Targets. vol 11(3): 264−278. doi: https://doi.org/10.2174/138945010790711914.

BIOVIA DS. 2016. Discovery Studio Modeling Environment, Release 2018. San Diego: Dassault Systèmes.

Chavan SG, Deobagkar DD. 2015. An in silico insight into novel therapeutic interaction of LTNF peptide-LT10 and design of structure based peptidomimetics for putative anti-diabetic activity. PLoS ONE. vol 10(3): 1–20. doi: https://doi.org/10.1371/journal.pone.0121860.

Chen Y, Cai H, Pan J, Xiang N, Tien P, Ahola T, Guo D. 2009. Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proceedings of the National Academy of Sciences of the United States of America. vol 106(9): 3484−3489. doi: https://doi.org/10.1073/pnas.0808790106.

Cheng X, Guinn EJ, Buechel E, Wong R, Sengupta R, Shkel IA, Record Jr. MT. 2016. Basis of protein stabilization by K Glutamate: Unfavorable interactions with carbon, oxygen groups. Biophysical Journal. vol 111(9): 1854−1865. doi: https://doi.org/10.1016/j.bpj.2016.08.050.

Dean RE, O’Brien LM, Thwaite JE, Fox MA, Atkins H, Ulaeto DO. 2010. A carpet-based mechanism for direct antimicrobial peptide activity against vaccinia virus membranes. Peptides. vol 31(11): 1966−1972. doi: https://doi.org/10.1016/j.peptides.2010.07.028.

Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, Mazet JK, Hu B, Zhang W, Peng C, Zhang YJ, Luo CM, Tan B, Wang N, Zhu Y, Crameri G, Zhang SY, Wang LF, Daszak P, Shi ZL. 2013. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. vol 503: 535−538. doi: https://doi.org/10.1038/nature12711.

Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li S, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS. 2020. Clinical characteristics of coronavirus disease 2019 in China. The New England Journal of Medicine. vol 382: 1708−1720. doi: https://doi.org/10.1056/NEJMoa2002032.

Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, Tan KS, Wang DY, Yan Y. 2020. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - An update on the status. Military Medical Research. vol 7(11): 1–10. https://doi.org/10.1186/s40779-020-00240-0.

Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, Duan Y, Yu J, Wang L, Yang K, Liu F, Jiang R, Yang X, You T, Liu X, Yang X, Bai F, Liu H, Liu X, Guddat LW, Xu W, Xiao G, Qin C, Shi Z, Jiang H, Rao Z, Yang H. 2020. Structure of Mpro from COVID-19 virus and discovery of its inhibitors. Nature. vol 582: 289−293. doi: https://doi.org/10.1038/s41586-020-2223-y.

Kaczor AA, Selent J, Sanz F, Pastor M. 2013. Modeling complexes of transmembrane proteins: Systematic analysis of protein-protein docking tools. Molecular Informatics. vol 32(8): 717−733. doi: https://doi.org/10.1002/minf.201200150.

Kirchdoerfer RN, Wang N, Pallesen J, Wrapp D, Turner HL, Cottrell CA, Corbett KS, Graham BS, McLellan JS, Ward AB. 2018. Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Scientific Reports. vol 8: 1−11. doi: https://doi.org/10.1038/s41598-018-34171-7.

Kumar S, Maurya VK, Prasad AK, Bhatt MLB, Saxena SK. 2020. Structural, glycosylation and antigenic variation between 2019 novel coronavirus (2019-nCoV) and SARS coronavirus (SARS-CoV). VirusDisease. vol 31(1): 13−21. doi: https://doi.org/10.1007/s13337-020-00571-5.

Lamiable A, Thévenet P, Rey J, Vavrusa M, Derreumaux P, Tufféry P. 2016. PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Research. vol 44(1): 449−454. doi: https://doi.org/10.1093/nar/gkw329.

Letko M, Marzi A, Munster V. 2020. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature Microbiology. vol 5(4): 1−8. doi: https://doi.org/10.1038/s41564-020-0688-y.

Li F, Li W, Farzan M, Harrison SC. 2005. Structural biology: Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science. vol 309(5742): 1864−1868. doi: https://doi.org/10.1126/science.1116480.

Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W. 2020. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet. vol 395(10224): 565−574. doi: https://doi.org/10.1016/S0140-6736(20)30251-8.

Marcocci ME, Amatore D, Villa S, Casciaro B, Aimola P, Franci G, Grieco P, Galdiero M, Palamara AT, Mangoni ML, Nencioni L. 2018. The amphibian antimicrobial peptide temporin b inhibits in vitro herpes simplex virus 1 infection. Antimicrobial Agents and Chemotherapy. vol 62(5): 1–13. doi: https://doi.org/10.1128/AAC.02367-17.

Matanic VCA, Castilla V. 2004. Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. International Journal of Antimicrobial Agents. vol 23(4): 382–389. doi: https://doi.org/10.1016/j.ijantimicag.2003.07.022.

Maupetit J, Derreumaux P, Tuffery P. 2009. PEP-FOLD: An online resource for de novo peptide structure prediction. Nucleic Acids Research. vol 37: 498−503. doi: https://doi.org/10.1093/nar/gkp323.

Park JE, Li K, Barlan A, Fehr AR, Perlman S, McCray PB, Gallagher T. 2016. Proteolytic processing of middle east respiratory syndrome coronavirus spikes expands virus tropism. Proceedings of the National Academy of Sciences of the United States of America. vol 113(43): 12262−12267. doi: https://doi.org/10.1073/pnas.1608147113.

Sathya D, Rajeswari VD. 2016. In Silico docking analysis of bioactive compounds from Chinese medicine Jinqi Jiangtang Tablet (JQJTT) using Patch Dock. Journal of Chemical and Pharmaceutical Research. vol 5(8): 15−21.

Shartouny JR, Jacob J. 2019. Mining the tree of life: Host defense peptides as antiviral therapeutics. Seminars in Cell and Developmental Biology. vol 88: 147−155. doi: https://doi.org/10.1016/j.semcdb.2018.03.001.

Thévenet P, Shen Y, Maupetit J, Guyon F, Derreumaux P, Tufféry P. 2012. PEP-FOLD: An updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic Acids Research. vol 40: 288−293. doi: https://doi.org/10.1093/nar/gks419.

Walls AC, Xiong X, Park YJ, Tortorici MA, Snijder J, Quispe J, Cameroni E, Gopal R, Dai M, Lanzavecchia A, Zambon M, Rey FA, Corti D, Veesler D. 2019. Unexpected receptor functional mimicry elucidates activation of coronavirus fusion. Cell. vol 176(5): 1026−1039. doi: https://doi.org/10.1016/j.cell.2018.12.028.

Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z. 2020. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA - Journal of the American Medical Association. vol 323(11): 1061−1069. doi: https://doi.org/10.1001/jama.2020.1585.

Wheeler SE, Seguin TJ, Guan Y, Doney AC. 2016. Noncovalent interactions in organocatalysis and the prospect of computational catalyst design. Accounts of Chemical Research. vol 49(5): 1061−1069. doi: https://doi.org/10.1021/acs.accounts.6b00096.

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. vol 579: 270−273. doi: https://doi.org/10.1038/s41586-020-2012-7.

Published
2020-06-30
Section
Research Articles
Abstract viewed = 790 times