Arrhenius Plot Analysis of the Temperature Effect on the Biodegradation Rate of 2-chloro-4-nitrophenol

  • Mohd Yunus Shukor Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia
    (MY)

Abstract

Several models are available to determine the effect of temperature on the growth rate of microorganisms on substrates. An example is Arrhenius model, which is very popular because it has few parameters. For the first time, a discontinuous chevron-like graph of apparent activation energy based on the Arrhenius plot on the growth of 2-chloro-4-nitrophenol by Cupriavidus sp. is reported. The plot of ln mm against 1/T shows a discontinuous chevron-like graph for the entire investigated temperature range with an inflection at 27.75°C. This indicates that the existence of 2 activation energies for growth on 2-chloro-4-nitrophenol ranges from 20 to 40°C. Furthermore, a regression analysis from 20–25°C and 30–40°C results in activation energies of 88.71 kJmol-1 and 75.16kJ mol-1, respectively. This is probably the first time a Chevron-like graph was observed for the Arrhenius plot on the effect of temperature on the growth rate of 2-chloro-4-nitrophenol.

References

Affandi IE, Suratman NH, Abdullah S, Ahmad WA, Zakaria ZA. 2014. Degradation of oil and grease from high-strength industrial effluents using locally isolated aerobic biosurfactant-producing bacteria. International Biodeterioration and Biodegradation. vol 95: 33–40. doi: https://doi.org/10.1016/j.ibiod.2014.04.009.

Aisami A, Yasid NA, Johari WLW, Shukor MY. 2017. Estimation of the Q10 value; the temperature coefficient for the growth of Pseudomonas sp. aq5-04 on phenol. Bioremediation Science and Technology Research. vol 5: 24–26.

Angelova B, Avramova T, Stefanova L, Mutafov S. 2008. Temperature effect on bacterial azo bond reduction kinetics: an Arrhenius plot analysis. Biodegradation. vol 19: 387–393. doi: https://doi.org/10.1007/s10532-007-9144-4.

Arora PK, Jain RK. 2011. Pathway for degradation of 2-chloro-4-nitrophenol in Arthrobacter sp. SJCon. Current Microbiology. vol 63: 568–573. doi: https://doi.org/10.1007/s00284-011-0022-2.

Arora PK, Srivastava A, Garg SK, Singh VP. 2018. Recent advances in degradation of chloronitrophenols. Bioresource Technology. vol 250: 902–909. doi: https://doi.org/10.1016/j.biortech.2017.12.007.

Arrhenius S. 1889. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Zeitschrift Für Physikalische Chemie. vol 4: 226–248. doi: https://doi.org/10.1515/zpch-1889-0416.

Bandyopadhyay SK, Chatterjee K, Tiwari RK, Mitra A, Banerjee A, Ghosh KK, Chatterjee GC. 1981. Biochemical studies on molybdenum toxicity in rats: effects of high protein feeding. International Journal for Vitamin and Nutrition Research. vol 51: 401–409.

Bay HH, Lim CK, Kee TC, Ware I, Chan GF, Shahir S, Ibrahim Z. 2014. Decolourisation of acid orange 7 recalcitrant auto-oxidation coloured by-products using an acclimatised mixed bacterial culture. Environmental Science and Pollution Research. vol 21: 3891–3906. doi: https://doi.org/10.1007/s11356-013-2331-4.

Benedek P, Farkas P. 1970. Influence of temperature on the reactions of the activated sludge process. Proceedings of the International Symposium on Water Pollution Control in Cold Climates. vol 44(7): 1433-1442.

Benyahia F, Polomarkaki R. 2005. Mass transfer and kinetic studies under no cell growth conditions in nitrification using alginate gel immobilized Nitrosomonas. Process Biochemistry. vol 40: 1251–1262. doi: https://doi.org/10.1016/j.procbio.2004.05.011.

Ceuterick F, Peeters J, Heremans K, De Smed, H, Olbrechts H. 1978. Effect of high pressure, detergents and phaospholipase on the break in the arrhenius plot of Azotobacter nitrogenase. European Journal of Biochemistry vol 87: 401–407.

Chistyakova TA, Minkevich IG, Eroshin VK. 1983. Growth of the thermotolerant yeast, Candida valida, on ethanol: Dependences of maximal growth rate and cell biomass yield on temperature. European Journal of Applied Microbiology and Biotechnology. vol 18: 225–228.

Christen P, Vega A, Casalot L, Simon G, Auria R. 2012. Kinetics of aerobic phenol biodegradation by the acidophilic and hyperthermophilic archaeon Sulfolobus solfataricus 98/2. Biochemical Engineering Journal. vol 62: 56–61. doi: https://doi.org/10.1016/j.bej.2011.12.012.

Fuentes MS, Briceño GE, Saez JM, Benimeli CS, Diez MC, Amoroso MJ. 2013. Enhanced removal of a pesticides mixture by single cultures and consortia of free and immobilized streptomyces strains. BioMed Research International. vol 2013: 1-9. doi: https://doi.org/10.1155/2013/392573.

Gafar AA, Manogaran M, Yasid NA, Halmi MIE, Shukor MY, Othman AR. 2019. Arrhenius plot analysis, temperature coefficient and Q10 value estimation for the effect of temperature on the growth rate on acrylamide by the Antarctic bacterium Pseudomonas sp. strain DRYJ7. Journal of Environmental Microbiology and Toxicology. vol 7: 27–31.

Ghazali FM, Johari WLW. 2015. The occurrence and analysis of bisphenol A (BPA) in environmental samples – a review. Journal of Biochemistry, Microbiology and Biotechnology. vol 3: 30–38.

Ghosh A, Khurana M, Chauhan A, Takeo M, Chakraborti A, Jain R. 2010. Degradation of 4-nitrophenol, 2-chloro-4-nitrophenol, and 2,4-dinitrophenol by Rhodococcus imtechensis strain RKJ300. Environmental Science & Technology. vol 44: 1069–1077. doi: https://doi.org/10.1021/es9034123.

Hasan SA, Jabeen S. 2015. Degradation kinetics and pathway of phenol by Pseudomonas and Bacillus species. Biotechnology and Biotechnological Equipment. vol 29: 45–53. doi: https://dx.doi.org/10.1080%2F13102818.2014.991638.

Jahan K, Ordóñez R, Ramachandran R, Balzer S, Stern M. 2008. Modeling biodegradation of nonylphenol. Water, Air, & Soil Pollution: Focus. vol 8: 395–404. doi: https://doi.org/10.1007/s11267-007-9148-4.

Kasana RC, Pandey CB. 2018. Exiguobacterium: an overview of a versatile genus with potential in industry and agriculture. Critical Reviews in Biotechnology. vol 38(1): 141–156. doi: https://doi.org/10.1080/07388551.2017.1312273.

Kuhn HJ, Cometta S, Fiechter A. 1980. Effects of growth temperature on maximal specific growth rate, yield, maintenance, and death rate in glucose-limited continuous culture of the thermophilic Bacillus caldotenax. European Journal of Applied Microbiology and Biotechnology. vol 10: 303–315.

Luo ZH, Pang KL, Wu YR, Gu JD, Chow RK, Vrijmoed LLP. 2012. Degradation of phthalate esters by Fusarium sp. DMT-5-3 and Trichosporon sp. DMI-5-1 isolated from mangrove sediments. In: Biology of marine fungi. Berlin: Springer. pp 299–328.

Melin ES, Ferguson JF, Puhakka JA. 1997. Pentachlorophenol biodegradation kinetics of an oligotrophic fluidized-bed enrichment culture. Applied Microbiology and Biotechnology vol 47: 675–682.

Melin, E.S., Jarvinen, K.T. and Puhakka, J.A. 1998. Effects of temperature on chlorophenol biodegradation kinetics in fluidized-bed reactors with different biomass carriers. Water Research 32: 81–90.

Min J, Wang J, Chen W, Hu X. 2018. Biodegradation of 2-chloro-4-nitrophenol via a hydroxyquinol pathway by a Gram-negative bacterium, Cupriavidus sp. strain CNP-8. AMB Express. vol 8: 1–11. doi: https://doi.org/10.1186/s13568-018-0574-7.

Minkevich IG, Satroutdinov AD, Dedyukhina EG, Chistyakova TI, Kaparullina EN, Koshelev AV, Okunev ON. 2006. The effect of temperature on bacterial degradation of EDTA in pH-auxostat. World Journal of Microbiology and Biotechnology. vol 22: 1205–1213. doi: https://doi.org/10.1007/s11274-006-9162-0.

Mukerjee-Dhar G, Shimura M, Miyazawa D, Kimbara K, Hatta T. 2005. Bph genes of the thermophilic PCB degrader, Bacillus sp. JF8: characterization of the divergent ring-hydroxylating dioxygenase and hydrolase genes upstream of the Mn-dependent BphC. Microbiology. vol 151: 4139–4151. doi: https://doi.org/10.1099/mic.0.28437-0.

Mutafov SB, Minkevich IG. 1986. Temperature effect on the growth of Candida utilis VLM-Y-2332 on ethanol. Comptes Rendus de L’Academie Bulgare Des Sciences. vol 39: 71–74.

Onysko KA, Budman HM, Robinson CW. 2000. Effect of temperature on the inhibition kinetics of phenol biodegradation by Pseudomonas putida Q5. Biotechnology and Bioengineering. vol 70: 291–299. doi: https://doi.org/10.1002/1097-0290(20001105)70:3%3C291::aid-bit6%3E3.0.co;2-y.

Pandey J, Heipieper HJ, Chauhan A, Arora PK, Prakash D, Takeo M, Jain RK. 2011. Reductive dehalogenation mediated initiation of aerobic degradation of 2-chloro-4-nitrophenol (2C4NP) by Burkholderia sp. strain SJ98. Applied Microbiology and Biotechnology. vol 92: 597–607. doi: https://doi.org/10.1007/s00253-011-3254-y.

Ratkowsky DA, Olley J, McMeekin TA, Ball A. 1982. Relationship between temperature and growth rate of bacterial cultures. Journal of Bacteriology. vol 149: 1–5.

Reardon KF, Mosteller DC, Bull Rogers JD. 2000. Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F 1. Biotechnology and Bioengineering. vol 69: 385–400. doi: https://doi.org/10.1002/1097-0290(20000820)69:4%3C385::aid-bit5%3E3.0.co;2-q.

Reynolds JH, Middlebrooks EJ, Procella DB. 1974. Temperature-toxicity model for oil refinery waste. Journal of the Environmental Engineering Division. vol 100: 557–576.

Rohatgi A. 2018. WebPlotDigitizer—Extract data from plots, images, and maps. http://arohatgi. info/WebPlotDigitizer.

Saravanan P, Pakshirajan K, Saha P. 2008. Growth kinetics of an indigenous mixed microbial consortium during phenol degradation in a batch reactor. Bioresource Technology. vol 99: 205–209. doi: https://doi.org/10.1016/j.biortech.2006.11.045.

Singh RK, Kumar S, Kumar S, Kumar A. 2008. Biodegradation kinetic studies for the removal of p-cresol from wastewater using Gliomastix indicus MTCC 3869. Biochemical Engineering Journal. vol 40: 293–303. doi: https://doi.org/10.1016/j.bej.2007.12.015.

Tchobanoglous G, Schoeder ED. 1985. Water Quality: Characteristics, Modeling and Modification, 1st ed. London: Pearson Reading Mass.

Verrips CT, Kwast RH. 1977. Heat resistance of Citrobacter freundii in media with various water activities. European Journal of Applied Microbiology. vol 4: 225–231.

Zulkharnain A, Maeda R, Omori T. 2013. Expression, purification and characterization of meta-cleavage enzyme carbabb from Novosphiongobium sp. KA1. Journal of Biochemistry, Microbiology and Biotechnology. vol 1: 11–16.

Zwietering MH, de Koos JT, Hasenack BE, de Witt JC, van’t Riet K. 1991. Modeling of bacterial growth as a function of temperature. Applied and Environmental Microbiology. vol 57: 1094–1101.

Published
2020-12-30
Section
Research Articles
Abstract viewed = 235 times