Growth and physiological response of rice ‘Inpari 35’ under salinity stress and application of silicate fertilizer
Abstract
Rice is an important staple food in Indonesia. Crop areas can be expanded to boost productivity by utilizing marginal lands, which are saline. This study aims to study the growth and physiological response of rice ‘Inpari 35’ to the application of silicate fertilizer under salinity stress conditions. This study used a completely randomized design (CRD) with two factors. The first factor is the difference in NaCl salt concentration consisting of N0: 0 mM; N1: 37.5 mM; N2: 50 mM, while the second factor is the difference in the concentration of silicate fertilizer (CaSiO3) consisting of S0: 0 mM; S1: 1 mM and S2: 2 mM. Each treatment combination was repeated three times. Observed data were analyzed by analysis of variance (ANOVA). A significant difference between treatments is continued with Duncan's multiple distance test at a 95% confidence level. The results showed that NaCl treatment significantly (p<0.05) inhibited the growth of rice ‘Inpari 35’, which was indicated by a decrease in the plant height and number of leaves. The NaCl treatment caused a reduction in the levels of chlorophyll, carotenoids, proline, membrane stability index (MSI), and relative water content (RWC). The interaction between NaCl treatment and CaSiO3 showed significant differences in physiological parameters by increasing the levels of chlorophyll, carotenoid, proline, membrane stability index, and relative water content.
References
Aini N, Sumiya WD, Syekhfani DR, Setiawan A. 2014. Kajian pertumbuhan, kandungan klorofil dan hasil beberapa genotipe tanaman kedelai (Glycine max L.) pada kondisi salinitas. Prosiding Seminar Nasional Lahan Sub Optimal. September 26-27, 2014. Palembang: Universitas Jambi. ISBN 979-587-529-9. pp 591–597.
Almeida DM, Oliveira MM, Saibo NJM. 2017. Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genetics and Molecular Biology. vol 40: 326–345. doi: https://doi.org/10.1590/1678-4685-GMB-2016-0106.
Amirjani MR. 2011. Effect of salinity stress on growth, sugar content, pigments and enzyme activity of rice. International Journal of Botany. vol 7(1): 73–81. doi: https://dx.doi.org/10.3923/ijb.2011.73.81.
Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil. vol 39: 205–207. doi: https://doi.org/10.1007/BF00018060.
Bhat JA, Shivaraj SM, Singh P, Navadagi DB, Tripathi DK, Dash PK, Solanke AU, Sonah H, Deshmukh R. 2019. Role of silicon in mitigation of heavy metal stresses in crop plants. Plants. vol 8(3): 1–20. doi: https://doi.org/10.3390/plants8030071.
Chen D, Wang S, Yin L, Deng X. 2018. How does silicon mediate plant water uptake and loss under water deficiency?. Frontiers in Plant Science. vol 9: 1–7. doi: https://doi.org/10.3389/fpls.2018.00281.
Chen W, Yao X, Cai K, Chen J. 2011. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biological Trace Element Research. vol 142(1): 67–76. doi: https://doi.org/10.1007/s12011-010-8742-x.
Cheng H, Inyang A, Li CD, Fei J, Zhou YW, Wang YS. 2020. Salt tolerance and exclusion in the mangrove plant Avicennia marina in relation to root apoplastic barriers. Ecotoxicology. vol 29(6): 676–683. doi: https://doi.org/10.1007/s10646-020-02203-6.
Chun SC, Paramasivan M, Chandrasekaran M. 2018. Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants. Frontiers in Microbiology. vol 9: 1–13. doi: https://doi.org/10.3389/fmicb.2018.02525.
Das P, Nutan KK, Singla-Pareek SL, Pareek A. 2015. Understanding salinity responses and adopting ‘omics-based’ approaches to generate salinity tolerant cultivars of rice. Frontiers in Plant Science. vol 6: 1–16. doi: https://doi.org/10.3389/fpls.2015.00712.
Dolatabadian A, Sanavy SAMM, Ghanati F. 2011. Effect of salinity on growth, xylem structure and anatomical characteristics of soybean. Notulae Scientia Biologicae. vol 3(1): 41–45. doi: http://dx.doi.org/10.15835/nsb315627.
El Moukhtari A, Cabassa-Hourton C, Farissi M, Savouré A. 2020. How does proline treatment promote salt stress tolerance during crop plant development?. Frontiers in Plant Science. vol 11: 1–16. doi: https://doi.org/10.3389/fpls.2020.01127.
Fleck AT, Nye T, Repenning C, Stahl F, Zahn M, Schenk MK. 2011. Silicon enhances suberization and lignification in roots of rice (Oryza sativa). Journal of Experimental Botany. vol 62(6): 2001–2011. doi: https://doi.org/10.1093/jxb/erq392.
Gao HJ, Yang HY, Bai JP, Liang XY, Lou Y, Zhang JL, Wang D, Zhang JL, Niu SQ, Chen YL. 2015. Ultrastructural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress. Frontiers in Plant Science. vol 5: 1–14. doi: https://doi.org/10.3389/fpls.2014.00787.
Ghosh N, Adak MK, Ghosh PD, Gupta S, Sen Gupta DN, Mandal C. 2011. Differential responses of two rice varieties to salt stress. Plant Biotechnology Reports. vol 5(1): 89–103. doi: https://doi.org/10.1007/s11816-010-0163-y.
Gilliham M, Dayod M, Hocking BJ, Xu B, Conn SJ, Kaiser BN, Leigh RA, Tyerman SD. 2011. Calcium delivery and storage in plant leaves: exploring the link with water flow. Journal of Experimental Botany. vol 62(7): 2233–2250. doi: https://doi.org/10.1093/jxb/err111.
González L, González-Vilar M. 2001. Determination of relative water content. Handbook of Plant Ecophysiology Techniques. Dordrecht: Springer. pp 207–212. doi: https://doi.org/10.1007/0-306-48057-3_14.
Harborne AJ. 1998. Phytochemical methods: A guide to modern techniques of plant analysis. 3rd Ed. New York: Springer. p 316.
Hassani A, Azapagic A, Shokri N. 2020. Predicting long-term dynamics of soil salinity and sodicity on a global scale. Proceedings of the National Academy of Sciences. vol 117(52): 33017–33027. doi: https://doi.org/10.1073/pnas.2013771117.
Hussain MI, Muscolo A, Farooq M, Ahmad W. 2019. Sustainable use and management of non-conventional water resources for rehabilitation of marginal lands in arid and semiarid environments. Agricultural Water Management. vol 221: 462–476. doi: https://doi.org/10.1016/j.agwat.2019.04.014.
Ikhsanti A, Kurniasih B, Indradewa D. 2018. Pengaruh aplikasi silika terhadap pertumbuhan dan hasil tanaman padi (Oryza sativa L.) pada kondisi salin. Vegetalika. Vol 7(4): 1–11. doi: https://doi.org/10.22146/veg.41144.
Jayantie G, Yunus A, Pujiasmanto B, Widiyastuti Y. 2017. Pertumbuhan dan kandungan asam oleanolat rumput mutiara (Hedyotis Corymbosa) pada berbagai dosis pupuk kandang sapi dan pupuk organik cair. Agrotechnology Research Journal. vol 1(2): 13–18. https://doi.org/10.20961/agrotechresj.v1i2.18880.
Jiang L, Deng X, Seto KC. The impact of urban expansion on agricultural land use intensity in China. Land Use Policy. vol 35: 33–39. doi: https://doi.org/10.1016/j.landusepol.2013.04.011.
Kafi M, Rahimi Z. 2011. Effect of salinity and silicon on root characteristics, growth, water status, proline content and ion accumulation of purslane (Portulaca oleracea L.). Soil Science and Plant Nutrition. vol 57(2): 341–347. doi: https://doi.org/10.1080/00380768.2011.567398.
Khare T, Kumar V, Kishor PK. 2015. Na+ and Cl− ions show additive effects under NaCl stress on induction of oxidative stress and the responsive antioxidative defense in rice. Protoplasma. vol 252(4): 1149–1165. doi: https://doi.org/10.1007/s00709-014-0749-2.
Luyckx M, Hausman JF, Lutts S, Guerriero G. 2017. Silicon and plants: current knowledge and technological perspectives. Frontiers in Plant Science. vol 8: 1–8. doi: https://doi.org/10.3389/fpls.2017.00411.
Machado RM, Serralheiro RP. 2017. Soil salinity: effect on vegetable crop growth, management practices to prevent and mitigate soil salinization. Horticulturae. vol 3(2): 1–13. doi: https://doi.org/10.3390/horticulturae3020030.
Mahbubi A. 2013. Model dinamis supply chain beras berkelanjutan dalam upaya ketahanan pangan nasional. Jurnal Manajemen & Agribisnis. vol 10(2): 81–89. doi: https://doi.org/10.17358/jma.10.2.81-89.
Maoka T. 2020. Carotenoids as natural functional pigments. Journal of Natural Medicines. vol 74(1): 1–6. doi: https://doi.org/10.1007/s11418-019-01364-x.
Meena VD, Dotaniya ML, Coumar V, Rajendiran S, Ajay A, Kundu S, Rao AS. 2014. A case for silicon fertilization to improve crop yields in tropical soils. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. vol 84(3): 505–518. doi: https://doi.org/10.1007/s40011-013-0270-y.
Mulyani A, Nursyamsi D, Syakir M. 2017. Strategi Pemanfaatan sumberdaya lahan untuk pencapaian swasembada beras berkelanjutan. Jurnal Sumberdaya Lahan. vol 11(1): 11–22. doi: http://dx.doi.org/10.21082/jsdl.v11n1.2017.11-22.
Polash MA, Sakil MA, Tahjib-Ul-Arif M, Hossain MA. 2018. Effect of salinity on osmolytes and relative water content of selected rice genotypes. Tropical Plant Research. vol 5(2): 227–232. doi: https://doi.org/10.22271/tpr.2018.v5.i2.029.
Rachmawati D, Ramadhani AN, Fatikhasari Z. 2021. The effect of silicate fertilizer on the root development of rice and its tolerance to salinity stress. IOP Conference Series: Earth and Environmental Science. vol 724(1): 1–9. doi: https://doi.org/10.1088/1755-1315/724/1/012004.
Rad HE, Aref F, Rezaei M. 2012. Response of rice to different salinity levels during different growth stages. Research Journal of Applied Sciences, Engineering and Technology. vol 4(17): 3040–3047.
Rahman A, Nahar K, Hasanuzzaman M, Fujita M. 2016. Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings. Frontiers in Plant Science. vol 7: 1–16. doi: https://doi.org/10.3389/fpls.2016.00609.
Reddy IN, Kim BK, Yoon IS, Kim KH, Kwon TR. Salt tolerance in rice: focus on mechanisms and approaches. Rice Science. vol 24(3): 123–144. doi: https://doi.org/10.1016/j.rsci.2016.09.004.
Rizwan M, Ali S, Ibrahim M, Farid M, Adrees M, Bharwana SA, Zia-ur-Rehman M, Qayyum MF, Abbas F. 2015. Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review. Environmental Science and Pollution Research. vol 22(20): 15416–15431. doi: https://doi.org/10.1007/s11356-015-5305-x.
Salsinha YC, Maryani ID, Purwestri YA, Rachmawati D. 2021. Morphological and anatomical characteristics of Indonesian rice roots from East Nusa Tenggara contribute to drought tolerance. Asian Journal of Agriculture and Biology. vol 2021(1): 1-11. doi: https://doi.org/10.35495/ajab.2020.05.304.
Septanti KS, Saptana S. 2019. Potensi pemanfaatan kearifan lokal untuk menahan konversi lahan sawah ke nonsawah. Forum penelitian Agro Ekonomi. vol 37(1): 59–75. doi: http://dx.doi.org/10.21082/fae.v37n1.2019.59-75.
Savvas D, Ntatsi G. 2015. Biostimulant activity of silicon in horticulture. Scientia Horticulturae. vol 196: 66–81. doi: https://doi.org/10.1016/j.scienta.2015.09.010.
Senguttuvel P, Vijayalakshmi C, Thiyagarajan K, Sritharan R, Geetha S, KannanBapu JR, Viraktamath BC. 2013. Differential response of rice seedlings to salt stress in relation to antioxidant enzyme activity and membrane stability index. Archives of Agronomy and Soil Science. vol 59(10): 1359–1371. doi: https://doi.org/10.1080/03650340.2012.724170.
Shah SH, Houborg R, McCabe MF. 2017. Response of chlorophyll, carotenoid and SPAD-502 measurement to salinity and nutrient stress in wheat (Triticum aestivum L.). Agronomy. vol 7(3): 1–21. doi: https://doi.org/10.3390/agronomy7030061.
Suhartini T, Harjosudarmo TZP. 2017. Toleransi plasma nutfah padi lokal terhadap salinitas. Buletin Plasma Nutfah. vol 23(1): 51–58. doi: http://dx.doi.org/10.21082/blpn.v23n1.2017.p51-58.
Sunartomo AF. 2015. Perkembangan konversi lahan pertanian di Kabupaten Jember. Agriekonomika. vol 4(1): 22–36. doi: https://doi.org/10.21107/agriekonomika.v4i1.671.
Swapna S, Shylaraj KS. 2017. Screening for osmotic stress responses in rice varieties under drought condition. Rice Science. vol 24(5): 253–263. doi: https://doi.org/10.1016/j.rsci.2017.04.004.
Swinton SM, Babcock BA, James LK, Bandaru V. 2011. Higher US crop prices trigger little area expansion so marginal land for biofuel crops is limited. Energy Policy. vol 39(9): 5254–5248. doi: https://doi.org/10.1016/j.enpol.2011.05.039.
Taïbi K, Taïbi F, Abderrahim LA, Ennajah A, Belkhodja M, Mulet JM. 2016. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African Journal of Botany. vol 105: 306–312. doi: https://doi.org/10.1016/j.sajb.2016.03.011.
Teh CY, Mahmood M, Shaharuddin NA, Ho CL. 2015. In vitro rice shoot apices as simple model to study the effect of NaCl and the potential of exogenous proline and glutathione in mitigating salinity stress. Plant Growth Regulation. vol 75(3): 771–781. doi: https://doi.org/10.1007/s10725-014-9980-2.
Wani AB, Chadar H, Wani AH, Singh S, Upadhyay N. 2017. Salicylic acid to decrease plant stress. Environmental Chemistry Letters. vol 15(1): 101–123. doi: https://doi.org/10.1007/s10311-016-0584-0.
Weisany W, Sohrabi Y, Heidari G, Siosemardeh A, Ghassemi-Golezani K. 2012. Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.). Plant Omics. vol 5(2): 60–67.
Yoshida S, Forno DA, Cock JH, Gomez KA. 1976. Laboratory manual for physiological studies of rice. 3rd Ed. Los Baños: International Rice Research Institute. p 61.
Zargar SM, Mahajan R, Bhat JA, Nazir M, Deshmukh R. 2019. Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system. 3 Biotech. vol 9(3): 1–16. doi: https://doi.org/10.1007/s13205-019-1613-z.
Zhang H, Hu H, Zhang X, Wang K, Song T, Zeng F. 2012. Detecting Suaeda salsa L. chlorophyll fluorescence response to salinity stress by using hyperspectral reflectance. Acta Physiologiae Plantarum. vol 34(2): 581–588. doi: https://doi.org/10.1007/s11738-011-0857-y.
Zhao C, Zhang H, Song C, Zhu JK, Shabala S. 2020. Mechanisms of plant responses and adaptation to soil salinity. The Innovation. vol 1(1): 1–41. doi: https://doi.org/10.1016/j.xinn.2020.100017.
Zhou D, Lin Z, Liu L, Zimmermann D. 2013. Assessing secondary soil salinization risk based on the PSR sustainability framework. Journal of Environmental Management. vol 128: 642–654. doi: https://doi.org/10.1016/j.jenvman.2013.06.025.
Copyright (c) 2021 Aulia Noor Ramadhani, Diah Rachmawati
This work is licensed under a Creative Commons Attribution 4.0 International License.
COPYRIGHT AND LICENSE STATEMENT
COPYRIGHT
Biogenesis: Jurnal Ilmiah Biologi is published under the terms of the Creative Commons Attribution license. Authors hold the copyright and retain publishing rights without restriction to their work. Users may read, download, copy, distribute, and print the work in any medium, provided the original work is properly cited.
LICENSE TO PUBLISH
1. License
The use of the article will be governed by the Creative Commons Attribution license as currently displayed on http://creativecommons.org/licenses/by/4.0.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User Rights
Under the Creative Commons Attribution license, the users are free to download, reuse, reprint, modify, distribute and/or copy the content for any purpose, even commercially, as long as the original authors and source are cited. No permission is required from the authors or the publishers.
4. Co-Authorship
If the article was prepared jointly with other authors, the corresponding author warrants that he/she has been authorized by all co-authors, and agrees to inform his/her co-authors of the terms of this statement.
5. Miscellaneous
Biogenesis: Jurnal Ilmiah Biologi may conform the article to a style of punctuation, spelling, capitalization, and usage that it deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers.