Effect of biofertilizer on growth and metaxylem diameter of Amaranthus tricolor L. in salinity stress condition

  • Okky Shavira Riesty Faculty of Biology, Universitas Gadjah Mada
    (ID)
  • Dwi Umi Siswanti

Abstract

Throughout history, agricultural sector in Indonesia has faced a shortage of land. As a result, we must take use of land that is still available, even if the conditions are unsuitable for plant growth, one of which is salinity-stressed land. Amaranth is a frequently cultivated plant in Indonesia (Amaranthus tricolor L.). This vegetable plant is commonly consumed as food due to its nutritional content and numerous health benefits. To cultivate amaranth on salinity-stressed land, additional nutrients are required to ensure that the plants continue to thrive. One of them is the provision of biofertilizers, a type of organic fertilizer that contains beneficial bacteria for plant growth. This study aimed to determinate the effect of biofertilizer application on the growth and diameter of the stem metaxylem of amaranth plants growing in a salinity-stressed environment. As a salinity stress treatment, NaCl was applied at doses of 0, 2500, 5000, 7500, and 10000 ppm. The diameter of the metaxylem was determined by making fresh preparations across amaranth stems. The biofertilizer application does not affect the height and number of leaves of the plant. However, as the dose of biofertilizer was increased, the value of the metaxylem diameter of the stem increased.

References

Adekayode FO, Ogunkoya MO. 2011. Comparative effects of organic compost and NPK fertilizer on soil fertility, yield and quality of amaranth in southwest Nigeria. International Journal of Biological and Chemical Sciences. vol 5(2): 490–499. doi: https://doi.org/10.4314/ijbcs.v5i2.72087.

Al-Amri SM. 2021. Application of bio-fertilizers for enhancing growth and yield of common bean plants grown under water stress conditions. Saudi Journal of Biological Sciences. vol 28(7): 3901–3908. doi https://doi.org/10.1016/j.sjbs.2021.03.064.

Atabayeva S, Nurmahanova A, Minocha S, Ahmetova A, Kenzhebayeva S, Aidosova S, Nurzhanova A, Zhardamalieva A, Asrandina S, Alybayeva R, Li T. 2013. The effect of salinity on growth and anatomical attributes of barley seedling (Hordeum vulgare L.). African Journal of Biotechnology. vol 12(18): 2366–2377. doi: https://doi.org/10.5897/AJB2013.12162.

Atieno M, Herrmann L, Nguyen HT, Phan HT, Nguyen NK, Srean P, Than MM, Zhiyong R, Tittabutr P, Shutsrirung A, Bräu L. 2020. Assessment of biofertilizer use for sustainable agriculture in the Great Mekong Region. Journal of Environmental Management. vol 275: 1–9. doi: https://doi.org/10.1016/j.jenvman.2020.111300.

Barron‐Gafford GA, Scott RL, Jenerette GD, Huxman TE. 2011. The relative controls of temperature, soil moisture, and plant functional group on soil CO2 efflux at diel, seasonal, and annual scales. Journal of Geophysical Research: Biogeosciences. vol 116(1): 1–16. doi: https://doi.org/10.1029/2010JG001442.

Chen G, Wang S, Huang X, Hong J, Du L, Zhang L, Ye L. 2015. Environmental factors affecting growth and development of Banlangen (Radix isatidis) in China. African Journal of Plant Science. vol 9(11): 421–426. doi: https://doi.org/10.5897/AJPS2015.%201266.

Chen M, Zeng X, Liu Y, Zhang H, Hu Q. 2021. An orthogonal design of light factors to optimize growth, photosynthetic capability and metabolite accumulation of Anoectochilus roxburghii (Wall.) Lindl. Scientia Horticulturae. vol 288: 1–9. doi: https://doi.org/10.1016/j.scienta.2021.110272.

de Siqueira Castro J, Calijuri ML, Ferreira J, Assemany PP, Ribeiro VJ. 2020. Microalgae based biofertilizer: A life cycle approach. Science of the Total Environment. vol 724: 1–10. doi: https://doi.org/10.1016/j.scitotenv.2020.138138.

Dewi P, Fariyanti A. 2015. Pendapatan usahatani bayam di Desa Ciaruteun Ilir Kecamatan Cibungbulang Kabupaten Bogor Jawa Barat. Forum Agribisnis. vol 5(2): 159–174.

Farooq M, Hussain M, Wakeel A, Siddique KHM. 2015. Salt stress in maize: effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development. vol 35(2): 461–481. doi: https://doi.org/10.1007/s13593-015-0287-0.

Gardiner B, Berry P, Moulia B. 2016. Wind impacts on plant growth, mechanics and damage. Plant Science. vol 245: 94–118. doi: https://doi.org/10.1016/j.plantsci.2016.01.006.

Gupta B, Huang B. 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics. vol 2014: 1–19. doi: https://doi.org/10.1155/2014/701596.

Han S, Xu B. 2014. Bioactive components of leafy vegetable edible amaranth (Amaranthus mangostanus L.) as affected by home cooking manners. American Journal of Food Science and Technology. vol 2(4): 122–127. doi: https://doi.org/10.12691/ajfst-2-4-3.

Hassan TU, Bano A. 2015. Role of carrier-based biofertilizer in reclamation of saline soil and wheat growth. Archives of Agronomy and Soil Science. vol 61(12): 1719–1731. doi: https://doi.org/10.1080/03650340.2015.1036045.

Hidayanti R, Rusmini H, Fitriani D, Ulfa AM. 2021. Pengaruh pemberian ekstrak daun bayam merah (Amaranthus tricolor L.) terhadap kadar ldl dan hdl pada tikus putih (Rattus norvegicus) galur wistar jantan yang diberi diet tinggi lemak. JKM (Jurnal Kebidanan Malahayati). vol 7(4): 809–817. doi: http://dx.doi.org/10.33024/jkm.v7i4.4619.

Hikosaka K, Noda HM. 2019. Modeling leaf CO2 assimilation and Photosystem II photochemistry from chlorophyll fluorescence and the photochemical reflectance index. Plant, Cell & Environment. vol 42(2): 730–739. doi: https://doi.org/10.1111/pce.13461.

Idris LM, Nulit R, Zaman FQ, Arifin FKM. 2020. Hydrotime analysis of Amaranthus spp. seed germination under salinity condition. Journal of Applied Research on Medicinal and Aromatic Plants. vol 17: 1–6. doi: https://doi.org/10.1016/j.jarmap.2020.100249.

Ji S, Liu Z, Liu B, Wang Y, Wang J. 2020. The effect of Trichoderma biofertilizer on the quality of flowering Chinese cabbage and the soil environment. Scientia Horticulturae. vol 262: 1–8. doi: https://doi.org/10.1016/j.scienta.2019.109069.

Jovanovski E, Bosco L, Khan K, Au-Yeung F, Ho H, Zurbau A, Jenkins AL, Vuksan V. 2015. Effect of spinach, a high dietary nitrate source, on arterial stiffness and related hemodynamic measures: a randomized, controlled trial in healthy adults. Clinical Nutrition Research. vol 4(3): 160–167. doi: https://doi.org/10.7762/cnr.2015.4.3.160.

Karolinoerita V, Yusuf WA. 2020. Salinisasi Lahan dan Permasalahannya di Indonesia. Jurnal Sumberdaya Lahan. vol 14(2): 91–99. doi: http://dx.doi.org/10.21082/jsdl.v14n2.2020.91-99.

Kartikawati A, Trisilawati O, Darwati I. 2017. Pemanfaatan pupuk hayati (biofertilizer) pada tanaman rempah dan obat/Biofertilizer utilization on spices and medicinal plants. Perspektif. vol 16(1): 33–43. doi: http://dx.doi.org/10.21082/psp.v16n1.2017.33-43.

Kementerian Pertanian. 2020. Pacu volume ekspor, Kementan latih 32 eksportir benih. Jakarta: Kementerian Pertanian Republik Indonesia. https://www.pertanian.go.id/.

Kementerian Pertanian. 2021. Kunjungi Petrokimia Gresik, Kementan jamin stok pupuk bersubsidi untuk petani aman. Jakarta: Kementerian Pertanian Republik Indonesia. https://www.pertanian.go.id/.

Lastdrager J, Hanson J, Smeekens S. Sugar signals and the control of plant growth and development. Journal of Experimental Botany. vol 65(3): 799–807. doi: https://doi.org/10.1093/jxb/ert474.

Latha P, Sudhakar P, Krisna MBM, Begam CR, Krishna TG. 2013. Quantification of lutein and β carotene in underutilized green leafy vegetables using high performance liquid chromatography. Vegetable Science. vol 40(1): 109–110.

Machado RMA, Serralheiro RP. 2017. Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae. vol 3(2): 1–13. doi: https://doi.org/10.3390/horticulturae3020030.

Malusá E, Sas-Paszt L, Ciesielska J. 2012. Technologies for beneficial microorganisms inocula used as biofertilizers. The Scientific World Journal. vol 2012: 1–13. doi: https://doi.org/10.1100/2012/491206.

Mindari W. Maroeto M, Syekhfani S. 2011. Maize tolerance to salinity of irrigation water. Journal of Tropical Soils. vol 16(3): 211–218. doi: http://dx.doi.org/10.5400/jts.2011.v16i3.211-218.

Mohammadi K, Sohrabi Y. 2012. Bacterial biofertilizers for sustainable crop production: a review. ARPN Journal of Agricultural and Biological Science. vol 7(5): 307–316.

Moilati VO, Yamlean PVY, Rundengan G. 2020. Formulasi sediaan krim ekstrak etanol daun bayam merah (Amaranthus tricolor L.) dan uji aktivitas antioksidan menggunakan metode DPPH (1.1-diphenyl-2-picrylhydrazyl). Pharmacon. vol 9(3): 372–380. doi: https://doi.org/10.35799/pha.9.2020.30021.

Parihar P, Singh S, Singh R, Singh VP, Prasad SM. 2015. Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research. vol (6): 4056–4075. doi: https://doi.org/10.1007/s11356-014-3739-1.

Patel D, Jayswal S, Solanki H, Maitreya B. 2020. Effect of salinity on different vegetable crops – a review. International Journal of Recent Scientific Research. vol 11(2): 37418–37422. doi: http://dx.doi.org/10.24327/ijrsr.2020.1102.5104.

Pradana DA, Rahmah FS, Setyaningrum TR. 2016. Potensi antihiperlipidemia ekstrak etanolik daun bayam merah (Amaranthus tricolor L.) terstandar secara in vivo berdasarkan parameter LDL (Low Density Lipoprotein). Jurnal Sains Farmasi & Klinis. vol 2(2): 122–128. doi: http://dx.doi.org/10.29208/jsfk.2016.2.2.72.

Prasad H, Sajwan P, Kumari M, Solanki SPS. 2017. Effect of organic manures and biofertilizer on plant growth, yield and quality of horticultural crop: A review. International Journal of Chemical Studies. vol 5(1): 217–221.

Putri CA, Pradana DA, Susanto Q. 2017. Efek ekstrak etanolik daun bayam merah (Amaranthus tricolor L.) terstandar terhadap indeks massa tubuh dan kadar glukosa darah pada tikus sprague dawley yang diberikan diet tinggi lemak sebagai upaya preventif obesitas. PHARMACY: Jurnal Farmasi Indonesia (Pharmaceutical Journal of Indonesia). vol 13(2): 150–161. doi: http://dx.doi.org/10.30595/pji.v13i02.1251.

Radha TK, Rao DL. 2014. Plant growth promoting bacteria from cow dung based biodynamic preparations. Indian Journal of Microbiology. vol 54(4): 413–418. doi: https://doi.org/10.1007/s12088-014-0468-6.

Rajput VD, Chen Y, Ayup M. 2015. Effects of high salinity on physiological and anatomical indices in the early stages of Populus euphratica growth. Russian Journal of Plant Physiology. vol 62(2): 229–236. doi: https://doi.org/10.1134/S1021443715020168.

Ren X, Liu Y, Jeong HK, Jeong BR. 2018. Supplementary light source affects the growth and development of Codonopsis lanceolata seedlings. International Journal of Molecular Sciences. vol 19(10): 1–19. doi: https://doi.org/10.3390/ijms19103074.

Sarker U, Oba S. 2020. Leaf pigmentation, its profiles and radical scavenging activity in selected Amaranthus tricolor leafy vegetables. Scientific Reports. vol 10(1): 1–10. doi: https://doi.org/10.1038/s41598-020-66376-0.

Selvi KB, Paul JJA, Vijaya V, Saraswathi K. 2017. Analyzing the efficacy of phosphate solubilizing microorganisms by enrichment culture techniques. Biochemistry and Molecular Biology Journal. vol 3(1): 1–7. doi: https://doi.org/10.21767/2471-8084.100027.

Shafiq I, Hussain S, Raza MA, Iqbal N, Asghar MA, Raza A, Fan YF, Mumtaz M, Shoaib M, Ansar M, Manaf A, Yang WY, Yang F. 2021. Crop photosynthetic response to light quality and light intensity. Journal of Integrative Agriculture. vol 20(1): 4–23. doi: https://doi.org/10.1016/S2095-3119(20)63227-0.

Siswanti DU, Rachmawati D. 2013. Pertumbuhan tiga kultivar padi (Oryza sativa L.) terhadap aplikasi pupuk bio cair dan kondisi tanah pertanian pasca erupsi Merapi 2010. Biogenesis: Jurnal Ilmiah Biologi. vol 1(2): 110–115. doi: https://doi.org/10.24252/bio.v1i2.456.

Siswanti DU, Utaminingsih U, Pangestuti NH. 2019. Capsaicin level and anatomy response of curly red chili (Capsicum annuum L.) to bio fertilizer and sludge biogas application. Proceeding of International Conference on Science and Technology. May 2-3, 2019. Makassar: FST Universitas Islam Negeri Alauddin Makassar. pp 1–8. doi: http://dx.doi.org/10.4108/eai.2-5-2019.2284700.

Siswanti DU, Khairunnisa NA. 2021. The effect of biofertilizer and salinity stress on Amaranthus tricolor L. growth and total leaf chlorophyll content. BIO Web of Conferences. vol 33: 1–8. doi: https://doi.org/10.1051/bioconf/20213302004.

Siswanti DU, Umah N. 2021. Effect of biofertilizer and salinity on growth and chlorophyll content of Amaranthus tricolor L. IOP Conference Series: Earth and Environmental Science. vol 662: 1–11. doi: https://doi.org/10.1088/1755-1315/662/1/012019.

Soumare A, Diedhiou AG, Thuita M, Hafidi M, Ouhdouch Y, Gopalakrishnan S, Kouisni L. 2020. Exploiting biological nitrogen fixation: a route towards a sustainable agriculture. Plants. vol 9(8): 1–22. doi: https://doi.org/10.3390/plants9081011.

Subowo S, Purwani J, Rochayati S. 2013. Prospek dan tantangan pengembangan Biofertilizer untuk perbaikan kesuburan tanah. Jurnal Sumberdaya Lahan. vol 7(1): 15–26. doi: http://dx.doi.org/10.21082/jsdl.v7n1.2013.%25p.

Sudrajat J. 2013. Potensi dan problematika pembangunan wilayah pesisir di Kalimantan Barat. Jurnal Social Economic of Agriculture. vol 2(1): 29–41.

Volkov V, Beilby MJ. 2017. Salinity tolerance in plants: Mechanisms and regulation of ion transport. Frontiers in Plant Science. vol 8: 1–4. doi: https://doi.org/10.3389/fpls.2017.01795.

Waraich EA, Ahmad R, Halim A, Aziz T. 2012. Alleviation of temperature stress by nutrient management in crop plants: a review. Journal of Soil Science and Plant Nutrition. vol 12(2): 221–244. doi: http://dx.doi.org/10.4067/S0718-95162012000200003 .

Wulandari F, Astiningrum M, Tujiyanta T. 2017. Pengaruh jumlah daun dan macam media tanam pada pertumbuhan stek jeruk nipis (Citrus aurantifolia Swingle). Vigor: Jurnal Ilmu Pertanian Tropika dan Subtropika. vol 2(2): 48–51. doi: http://dx.doi.org/10.31002/vigor.v2i2.487.

Xu F, Chu C, Xu Z. 2020. Effects of different fertilizer formulas on the growth of loquat rootstocks and stem lignification. Scientific Reports. vol 10(1): 1–11. doi: https://doi.org/10.1038/s41598-019-57270-5.

Zhang F, Huo Y, Cobb AB, Luo G, Zhou J, Yang G, Wilson GWT, Zhang Y. 2018. Trichoderma biofertilizer links to altered soil chemistry, altered microbial communities, and improved grassland biomass. Frontiers in Microbiology. vol 9: 1–11. doi: https://doi.org/10.3389/fmicb.2018.00848.

Zhang QC, Shamsi IH, Xu DT, Wang GH, Lin XY, Jilani G, Hussain N, Chaudhry AN. 2012. Chemical fertilizer and organic manure inputs in soil exhibit a vice versa pattern of microbial community structure. Applied Soil Ecology. vol 57: 1–8. doi: https://doi.org/10.1016/j.apsoil.2012.02.012.

Published
2021-12-30
Section
Research Articles
Abstract viewed = 433 times