Evaluation of antimicrobial activity and phytochemical screening of red Kamboja (Plumeria rubra L.) extracts

  • Ni Kadek Yunita Sari Faculty of Health, Science, and Technology, Universitas Dhyana Pura
    (ID)
  • Ni Wayan Deswiniyanti Faculty of Health, Science, and Technology, Universitas Dhyana Pura
    (ID)
  • Putu Angga Wiradana Faculty of Health, Science, and Technology, Universitas Dhyana Pura
    (ID)
Keywords: antimicrobial potency, bioactivity compounds, natural products, red frangipani, traditional medicine

Abstract

Natural antimicrobial sources such as red Kamboja (Plumeria rubra L.) flower extract can be utilized to treat infectious disorders caused by Staphylococcus aureus, Escherichia coli, and Candida albicans. This study aims to determine evaluate the effectiveness of methanol and ethanol extracts of P. rubra floral against E. coli, S. aureus, and C. albicans growth, as well as the amount of secondary metabolites in P. rubra extract. The study's findings indicate that the highest DIZ value of P. rubra methanol extract was 7.40 mm, 7.36 mm, and 7.30 mm for S. aureus ATCC25923 at 5%, 10%, and 20%, respectively, while the highest DIZ value for C. albicans ATCC10231 at 10%, 10%, and 20% was 25.08 mm, and 25.04 mm, respectively. The DIZ value of the P. rubra flower ethanol extract against E. coli strain was 5.26 mm at 5%, and 7.30 mm at 20%. Secondary metabolites of saponins, tannins, alkaloids, flavonoids, steroids, and phenols were present in the methanol and ethanol extracts of P. rubra flowers. In summary, our findings highlight the use of P. rubra flower extract as a biological source with antibacterial properties for the control of human infectious illnesses.

References

Abubakar AR, Haque M. 2020. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. Journal of Pharmacy & Bioallied Sciences. vol 12(1): 1–10. doi: https://dx.doi.org/10.4103%2Fjpbs.JPBS_175_19.

Ahaotu EO, Nwabueze E, Azubuike AP, Anyaegbu F. 2020. Evaluating the anti-inflammatory and anti-microbial properties of Plumeria rubra (Frangipani) for the prevention and treatment of diseases in animal agriculture. International Journal of Advanced Research in Medical & Pharmaceutical Sciences. vol 5(9): 1–9.

Aldulaimi OA. 2017. General overview of phenolics from plant to laboratory, good antibacterials or not. Pharmacognosy Reviews. vol 11(22): 123–127. doi: https://dx.doi.org/10.4103%2Fphrev.phrev_43_16.

Ali N, Ahmad D, Bakht J, Shah S, Ullah F, UrRahman M. 2013. Antimicrobial activity of leaves extracted samples from medicinally important Plumeria obtusa. Journal of Medicinal Plants Research. vol 7(17): 1146–1153. doi: https://doi.org/10.5897.

Ali N, Junaid M, Ahmad D, UrRahman M, Ali N, Katzenmeier G. 2014. Antibacterial and antifungal activity of solvent extracts from Plumeria obtusa Linn. Tropical Biomedicine. vol 31(4): 607–615.

Awaad SA, Alothman MR, Zain YM, Alqasoumi SI, Alothman EA. 2017. Quantitative and qualitative analysis for standardization of Euphorbia cuneata Vahl. Saudi Pharmaceutical Journal. vol 25(8): 1175–1178. doi: https://doi.org/10.1016/j.jsps.2017.08.001.

Balouiri M, Sadiki M, Ibnsouda SK. 2016. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis. vol 6(2): 71–79. doi: https://doi.org/10.1016/j.jpha.2015.11.005.

Bihani T. 2021. Plumeria rubra L.–A review on its ethnopharmacological, morphological, phytochemical, pharmacological and toxicological studies. Journal of Ethnopharmacology. vol 264: 1–23. doi: https://doi.org/10.1016/j.jep.2020.113291.

Bihani T, Tandel P, Wadekar J. 2021. Plumeria obtusa L.: A systematic review of its traditional uses, morphology, phytochemistry and pharmacology. Phytomedicine Plus. vol 1(2): 1–14. doi: https://doi.org/10.1016/j.phyplu.2021.100052.

Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. 2015. Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology. vol 13(1): 42–51. doi: https://doi.org/10.1038/nrmicro3380.

Cavalheiro M, Teixeira MC. 2018. Candida biofilms: threats, challenges, and promising strategies. Frontiers in Medicine. vol 5: 1–15. doi: https://doi.org/10.3389/fmed.2018.00028.

Cho CH, Youm GH, Kim M, Kim S, Song EJ, Nam YD, Lee SH. 2021. Evaluation of the relationship between bioactive components in seaweeds and advanced glycation end-products inhibitory activities using principal component analysis. Plant Foods for Human Nutrition. vol 76(3): 326–333. doi: https://doi.org/10.1007/s11130-021-00908-5.

De Kraker MEA, Davey PG, Grundmann H. 2011. Mortality and hospital stay associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic resistance in Europe. PLoS Medicine. vol 8(10): 1–8. doi: https://doi.org/10.1371/journal.pmed.1001104.

De Oliveira Santos GC, Vasconcelos CC, Lopes AJO, de Sousa Cartágenes MD, Filho AKDB, do Nascimento FRF, Ramos RM, Pires ERRB, de Andrade MS, Rocha FMG, de Andrade Monteiro C. 2018. Candida infections and therapeutic strategies: mechanisms of action for traditional and alternative agents. Frontiers in Microbiology. vol 9: 1–23. doi: https://doi.org/10.3389/fmicb.2018.01351.

Dou N, Li W, Zhou E, Wang C, Xiao Z, Zhou H. 2015. Risk factors for Candida infection of the genital tract in the tropics. African Health Sciences. vol 14(4): 835–839. doi: https://doi.org/10.4314/ahs.v14i4.10.

Fitri L, Yasmin Y, Fauziah F, Septiani DA, Suhartono S. 2020. Characterization of BSL6 isolates isolated from honeybee hive and to determine its antibacterial activity. Biodiversitas Journal of Biological Diversity. vol 21(10): 1–7. doi: https://doi.org/10.13057/biodiv/d211052.

Guilhelmelli F, Vilela N, Albuquerque P, Derengowski LDS, Silva-Pereira I, Kyaw CM. 2013. Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Frontiers in Microbiology. vol 4: 1–12. doi: https://doi.org/10.3389/fmicb.2013.00353.

Hutchings MI, Truman AW, Wilkinson B. 2019. Antibiotics: past, present and future. Current Opinion in Microbiology. vol 51: 72–80. doi: https://doi.org/10.1016/j.mib.2019.10.008.

Jaidka S, Somani R, Singh DJ, Sheikh T, Chaudhary N, Basheer A. 2017. Herbal combat against E. faecalis–An in vitro study. Journal of Oral Biology and Craniofacial Research. vol 7(3): 178–181. doi: https://doi.org/10.1016/j.jobcr.2017.08.001.

Lindahl JF, Grace D. 2015. The consequences of human actions on risks for infectious diseases: a review. Infection Ecology & Epidemiology. vol 5(1): 1–12. doi: https://doi.org/10.3402/iee.v5.30048.

Martida V, Pharmawati M. 2016. Pemilihan primer RAPD (Random Amplified Polymorphic DNA) pada PCR (Polymerase Chain Reaction) tanaman kamboja (Plumeria sp.). Jurnal Simbiosis. vol 4(1): 16–18.

Mellata M. 2013. Human and avian extraintestinal pathogenic Escherichia coli: infections, zoonotic risks, and antibiotic resistance trends. Foodborne Pathogens and Disease. vol 10(11): 916–932. doi: https://doi.org/10.1089/fpd.2013.1533.

Mohr KI. 2016. History of antibiotics research. Current Topics in Microbiology and Immunology. vol 398: 237–272. doi: https://doi.org/10.1007/82_2016_499.

Mujeeb F, Bajpai P, Pathak N. 2014. Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of Aegle marmelos. Biomed Research International. vol 2014: 1–12. doi: https://doi.org/10.1155/2014/497606.

Ngo TV, Scarlett CJ, Bowyer MC, Ngo PD, Vuong QV. 2017. Impact of different extraction solvents on bioactive compounds and antioxidant capacity from the root of Salacia chinensis L. Journal of Food Quality. vol 2017: 1–9. doi: https://doi.org/10.1155/2017/9305047.

Oliveira LSS, Sulistyono E, Gaol PDML, Melia T, Durán A. 2019. Plumeria rust caused by Coleosporium plumeriae on frangipani trees in Sumatra, Indonesia. Australasian Plant Disease Notes. vol 14(1): 1–4. doi: https://doi.org/10.1007/s13314-019-0366-1.

Patrisia S, Wartini NM, Suhendra L. 2017. Pengaruh jenis lemak dan minyak nabati pada proses ekstraksi sistem enfleurasi terhadap karakteristik minyak atsiri bunga Kamboja Cendana (Plumeria alba). Jurnal Rekayasa dan Manajemen Agroindustri. vol 5(2): 38–46.

Paranatha IGNA, Wartini NM, Gunam IBW. 2013. Karakteristik minyak atsiri bunga Kamboja Cendana (Plumeria alba) pada perlakuan lama proses distilasi. Jurnal Rekayasa dan Manajemen Agroindustri. vol 1(1): 31–38.

Plano LRW, Shibata T, Garza AC, Kish J, Fleisher JM, Sinigalliano CD, Gidley ML, Withum K, Elmir SM, Hower S, Jackson CR, Barrett JB, Cleary T, Davidson M, Davis J, Mukherjee S, Fleming LE, Solo-Gabriele HM. 2013. Human-associated methicillin-resistant Staphylococcus aureus from a subtropical recreational marine beach. Microbial Ecology. vol 65(4): 1039–1051. doi: https://doi.org/10.1007/s00248-013-0216-1.

Prakash M, Gunasekaran G. 2011. Antibacterial activity of the indigenous earthworms Lampito mauritii (Kinberg) and Perionyx excavatus (Perrier). The Journal of Alternative and Complementary Medicine. vol 17(2): 167–170. doi: https://doi.org/10.1089/acm.2009.0720.

Rai J, Randhawa GK, Kaur M. 2013. Recent advances in antibacterial drugs. International Journal of Applied and Basic Medical Research. vol 3(1): 3–10. doi: https://dx.doi.org/10.4103%2F2229-516X.112229.

Sanjaya IKAA, Kriswiyanti E, Darmadi AAK. 2020. Karakteristik dan viabilitas serbuk sari 38 ragam tanaman Kamboja (Plumeria spp.) di Bali. Metamorfosa: Journal of Biological Sciences. vol 7(1): 40–47. doi: https://doi.org/10.24843/metamorfosa.2020.v07.i01.p06.

Sari NKY, Sumadewi NLU. 2021. Aktivitas antifungi saponin bunga Kamboja Putih (Plumeria acuminata) pada Candida albicans ATCC 10231. Metamorfosa: Journal of Biological Sciences. vol 8(1): 74–80. doi: https://doi.org/10.24843/metamorfosa.2021.v08.i01.p07.

Sharma SK, Kumar N. 2012. Antimicrobial potential of Plumeria rubra Syn Plumeria acutifolia bark. Der Pharma Chemica. vol 4(4): 1591–1593.

Sholeha L, Wrasiati LP, Putra GG. 2014. Karakteristik teh instan bunga Kamboja Sudamala (Plumeria rubra) yang diproduksi dengan teknik kokristalisasi. Jurnal Rekayasa dan Manajemen Agroindustri. vol 2(2): 13–25.

Solo-Gabriele HM, Harwood VJ, Kay D, Fujioka RS, Sadowsky MJ, Whitman RL, Wither A, Caniça M, da Fonseca RC, Duarte A, Edge TA, Gargaté MJ, Gunde-Cimerman N, Hagen F, McLellan SL, da Silva AN, Babič MN, Prada S, Rodrigues R, Romão D, Sabino R, Samson RA, Segal E, Staley C, Taylor HD, Veríssimo C, Viegas C, Barroso H, Brandão JC. 2016. Beach sand and the potential for infectious disease transmission: observations and recommendations. Journal of the Marine Biological Association of the United Kingdom. vol 96(1): 101–120. doi: https://doi.org/10.1017/S0025315415000843.

Sofowora A, Ogunbodede E, Onayade A. 2013. The role and place of medicinal plants in the strategies for disease prevention. African journal of Traditional, Complementary and Alternative Medicines. vol 10(5): 210–229. doi: https://doi.org/10.4314/ajtcam.v10i5.2.

Tambo E, Ai L, Zhou X, Chen JH, Hu W, Bergquist R, Guo JG, Utzinger J, Tanner M, Zhou XN. 2014. Surveillance-response systems: the key to elimination of tropical diseases. Infectious Diseases of Poverty. vol 3(1): 1–11. doi: https://doi.org/10.1186/2049-9957-3-17.

Vermassen A, Leroy S, Talon R, Provot C, Popowska M, Desvaux M. 2019. Cell wall hydrolases in bacteria: insight on the diversity of cell wall amidases, glycosidases and peptidases toward peptidoglycan. Frontiers in Microbiology. vol 10: 1–27. doi: https://doi.org/10.3389/fmicb.2019.00331.

Vu TT, Kim H, Tran VK, Le Dang Q, Nguyen HT, Kim H, Kim IS, Choi GJ, Kim JC. 2015. In vitro antibacterial activity of selected medicinal plants traditionally used in Vietnam against human pathogenic bacteria. BMC Complementary and Alternative Medicine. vol 16(1): 1–6. doi: https://doi.org/10.1186/s12906-016-1007-2.

Wang L, Hu C, Shao L. 2017. The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine. vol 12: 1227–1249. doi: https://dx.doi.org/10.2147%2FIJN.S121956.

Widhiantara IG, Jawi IM. 2021. Phytochemical composition and health properties of Sembung plant (Blumea balsamifera): A review. Veterinary World. vol 14(5): 1185–1196. doi: https://dx.doi.org/10.14202%2Fvetworld.2021.1185-1196.

Yanto TA, Hatta M, Bukhari A, Natzir R. 2020. Molecular and immunological mechanisms of Miana leaf (Coleus scutellariodes [L] Benth) in infectious diseases. Biomedical and Pharmacology Journal. vol 13(4): 1607–1618. doi: https://dx.doi.org/10.13005/bpj/2036.

Zacchino SA, Butassi E, Di Liberto M, Raimondi M, Postigo A, Sortino M. 2017. Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs. Phytomedicine. vol 37: 27–48. doi: https://doi.org/10.1016/j.phymed.2017.10.018.

Zakaryan H, Arabyan E, Oo A, Zandi K. 2017. Flavonoids: promising natural compounds against viral infections. Archives of Virology. vol 162(9): 2539–2551. doi: https://doi.org/10.1007/s00705-017-3417-y.

Zapata A, Ramirez-Arcos S. 2015. A comparative study of McFarland turbidity standards and the Densimat photometer to determine bacterial cell density. Current Microbiology. vol 70(6): 907–909. doi: https://doi.org/10.1007/s00284-015-0801-2.

Zumbroich TJ. 2013. Plumerias the color of roseate spoonbills'-continuity and transition in the symbolism of Plumeria L. in Mesoamerica. Ethnobotany Research & Applications. vol 11: 341–363.

Zuza-Alves DL, Silva-Rocha WP, Chaves GM. 2017. An update on Candida tropicalis based on basic and clinical approaches. Frontiers in Microbiology. vol 8: 1–25. doi: https://doi.org/10.3389/fmicb.2017.01927.

Published
2021-12-30
Section
Research Articles
Abstract viewed = 573 times