Application of Indigenous AMF from ex-coal Mining Soil Combined with Phosphorus Fertilizers to Improved Oil Palm Seedling Growth (Elaeis guineensis Jacq.)
Abstract
Opencast mining caused heavy deforestation and barren land in Jambi. This ex-mining land must be reclaimed by planting crops based on biofertilizers containing mycorrhizae, this is a potential alternative that provides benefit both agronomy plant and ecosystem specially replanting with oil palm. Those are the technology for reclamation ex-coal mining soil. This research aim is to examine the effect of four combinations indigenous isolate of Arbuscular Mycorrhizae Fungi (AMF), which is originated from ex-coal mining soil that combined with Phosphorous fertilizers to minimize utilizing P fertilizer at oil palm pre-nursery, to improve soil fertility, and seedling growth. Hence, this research was arranged in factorial experiment with 2 factors, using a complete randomized design with three replications. The first factor is five different mycorrhizae isolates, representing a broad range of endomycorrhizae fungi, there are: without indigenous AMF, isolate of Glomus sp. 3, isolates of Glomus sp. 6, isolates of Glomus sp. 15 and isolates of Glomus sp. 16. The second factor is P fertilizer: control (without P fertilizers), fertilizer dosage P 25%, 50%, 75%, and 100%. Variables measured are shoot height, number of leaves per plant, total leaf area per plant, and plant stem diameter. The data were analyzed by analysis of variance to see whether there was an interaction between the MVA isolate and the P fertilizer dosage. The result showed a significant effect on palm oil seedling growth, shoot height, number of leaves per plant, total leaf area per plant but there is no interaction on the stem diameter. Plants that are inoculated with mycorrhizae have greater P content in leaves than those not inoculated. The types of isolated Glomus sp.3 and dosage P 75% of recommended dosage, give the best seedling growth. This research concluded that inoculation with AMF could minimize P fertilizers doses.References
Acevedo E, Galindo-Castañeda T, Prada F, Navia M, Romero HM. 2014. Phosphate-solubilizing microorganisms associated with the rhizosphere of oil palm (Elaeis guineensis Jacq.) in Colombia. Applied Soil Ecology. vol 80: 26-33. doi: https://doi.org/10.1016/j.apsoil.2014.03.011.
Amaya-Carpio L, Davies Jr FT, Fox T, He C. 2009. Arbuscular mycorrhizal fungi and organic fertilizer influence photosynthesis, root phosphatase activity, nutrition, and growth of Ipomoea carnea ssp. Fistulosa. Photosynthetica. vol 47: 1-10. doi: https://doi.org/10.1007/s11099-009-0003-x.
Basiron Y. 2007. Palm oil production through sustainable plantations. European Journal of Lipid Science and Technology. vol 109(4): 289-295. doi: https://doi.org/10.1002/ejlt.200600223
Bucher M. 2007. Functional biology of plant phosphate uptake at root and mycorrhizae interfaces. J. New Phytologist. vol 173(1): 11-26. doi: https://doi.org/10.1111/j.1469-8137.2006.01935.x.
Dreyer B, Pérez‐Gilabert M, Olmos E, Honrubia M, Morte A. 2008. Ultrastructural localization of acid phosphatase in arbusculate coils of mycorrhizal Phoenix canariensis roots. Physiologia Plantarum. vol 132(4): 503-513. doi: https://doi.org/10.1111/j.1399-3054.2007.01034.x.
Eom AH, Hartnett DC, Wilson GWT. 2000. Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia. vol 122(3): 435-444. doi: https://doi.org/10.1007/s004420050050.
Ermawati T, and Saptia Y. 2013. Kinerja ekspor minyak kelapa sawit Indonesia. Buletin Ilmiah Litbang Perdagangan. vol 7(2): 129-147.
Euler M, Hoffmann MP, Fathoni Z, Schwarze S. 2016. Exploring yield gaps in smallholder oil palm production systems in eastern Sumatra, Indonesia. Agricultural Systems. vol 146:111–119. doi: https://doi.org/10.1016/j.agsy.2016.04.007
Gaur A, and Adholeya A. 2002. Arbuscular mycorrhizal inoculation of five tropical fodder crops and inoculums production in marginal soil amended with organic matter. Biology and Fertility of Soils. vol 35(3): 214-218. doi: https://doi.org/10.1007/s00374-002-0457-5.
Goh KJ, and Po SB. 2005. Fertilizer recommendation systems for oil palm: estimating the fertilizer rates. In Proceedings of MOSTA Best practices workshops-agronomy and crop management. Malaysian Oil Scientists' and Technologists' Association. pp 1-37.
Jaiti F, Meddich A, Hadrami IE. 2007. Effectiveness of arbuscular mycorrhizal fungi in the protection of date palm (Phoenix dactylifera L.) against bayoud disease. Physiological and Molecular Plant Pathology. vol 71(4-6): 166-173. doi: https://doi.org/10.1016/j.pmpp.2008.01.002.
Joner EJ, van Aarle IM, Vosatka M. 2000. Phosphatase activity of extra-radical arbuscular mycorrhizal hyphae: A review. Plant and Soil. vol 226(2): 199–210. doi: https://doi.org/10.1023/A:1026582207192
Liu A, Plenchette C, Hammel C. 2007. Soil nutrient and water providers: How arbuscular mycorrhizal mycelia support plant performance in resource limited world. In: Hamel, C., Plenchette, C., (Eds.) mycorrhizae in crop production. Binghampton: Haworth Food and Agricultural Products Press. pp. 37-66.
Phosri C, Rodriguez A, Sanders IR, Jeffries P. 2010. The role of mycorrhizae in more sustainable oil palm cultivation. Agriculture, Ecosystem and Environment. vol 135(3): 187-193. doi: https://doi.org/10.1016/j.agee.2009.09.006.
Ramos-Zapata J, Orellana R, Guadarrama P, Medina-Peralta S. 2009. Contribution of mycorrhizae to early growth and phosphorus uptake by a neotropical palm. Journal of Plant Nutrition. vol 32(5): 855-866.
Ruiz-Lozano JM, and Azcón R. 2000. Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza. vol 10(3): 137–143. doi: https://doi.org/10.1007/s005720000075.
Sun CX, Cao HX, Shao HB, Lei XT, Xiao Y. 2011. Growth and physiological responses to water and nutrient stress in oil palm. African Journal of Biotechnology. vol 10(51): 10465-10471. doi: http://dx.doi.org/10.5897/AJB11.463.
Wahid MB. Abdullah SNA, Henson IE. 2005. Oil Palm. Plant Production Science. vol 8(3): 288-297. doi: https://doi.org/10.1626/pps.8.288.
Webb MJ. 2009. A conceptual framework for determining economically optimal fertiliser use in oil palm plantations with factorial fertiliser trials. Nutrient Cycling in Agroecosystems. vol 83(2): 163-178. doi: https://doi.org/10.1007/s10705-008-9207-x.
Woittiez LS, van Wijk MT, Slingerland M, van Noordwijk M, Giller KE. 2017. Yield gaps in oil palm: a quantitative review of contributing factors. European Journal of Agronomy. vol 83:57–77. doi: https://doi.org/10.1016/j.eja.2016.11.002
Copyright (c) 2019 Made Deviani Duaja, Elis Kartika, Lizawati Lizawati
This work is licensed under a Creative Commons Attribution 4.0 International License.
COPYRIGHT AND LICENSE STATEMENT
COPYRIGHT
Biogenesis: Jurnal Ilmiah Biologi is published under the terms of the Creative Commons Attribution license. Authors hold the copyright and retain publishing rights without restriction to their work. Users may read, download, copy, distribute, and print the work in any medium, provided the original work is properly cited.
LICENSE TO PUBLISH
1. License
The use of the article will be governed by the Creative Commons Attribution license as currently displayed on http://creativecommons.org/licenses/by/4.0.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User Rights
Under the Creative Commons Attribution license, the users are free to download, reuse, reprint, modify, distribute and/or copy the content for any purpose, even commercially, as long as the original authors and source are cited. No permission is required from the authors or the publishers.
4. Co-Authorship
If the article was prepared jointly with other authors, the corresponding author warrants that he/she has been authorized by all co-authors, and agrees to inform his/her co-authors of the terms of this statement.
5. Miscellaneous
Biogenesis: Jurnal Ilmiah Biologi may conform the article to a style of punctuation, spelling, capitalization, and usage that it deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers.