Morphological Traits, Productive Performance and Genotyping Fat Deposition PPAR Gene in Gama Ayam Crossbreeds of Female F1 Kamper and Male BC1 Kambro

  • Isna Mustafiatul Ummah Faculty of Biology, Universitas Gadjah Mada
    (ID)
  • I Wayan Swarautama Mahardhika Faculty of Biology, Universitas Gadjah Mada
  • Budi Setiadi Daryono Faculty of Biology, Universitas Gadjah Mada
    (ID)

Abstract

On the recent classification of native Indonesian chicken, there are 31 breeds of chicken. Highly circulated chicken breed in Indonesia is fast-growing broiler that includes several strains such as Cobb 500, Hubbard, Hybro, Isa Hyline, and Hisex. Fast-growing broiler chickens have rapid growth, with excessive fat deposition on chicken carcass which implicates a health problem and unfavorable meat quality. Gama Ayam Research Team conducted selective breeding which produces two new chicken breed Kamper and Kambro. Further selective breeding then crossbred female F1 Kamper and male BC1 (backcross I) Kambro. In this research morphological traits, productive performance and genotyping of PPAR gene related to fat deposition gene and blood lipid content in Gama Ayam were identified. Based on data analysis hybrid chickens morphological traits it concluded that Gama Ayam has a significant variation based on feather color. The productive performance was determined with the feed-conversion ratio (FCR) value which was 3.17. Genotyping of PPAR gene resulted in four polymorphisms that formed 14 haplotypes groups. Based on blood lipid content analysis of cholesterol content, triglycerides content, HDL and LDL, Gama Ayam have significantly lower content of cholesterol (107.05 mg/dl), LDL (44.71 mg/dl) and triglycerides (22.41 mg/dl). PPAR gene polymorphisms are not correlated with blood lipid content in Gama Ayam. A significantly strong correlation between PPAR gene polymorphism on the bodyweight of Gama Ayam at 49-days-old. Triglyceride level, cholesterol level and LDL level in Gama Ayam were lower than broiler chicken. Further research with a larger population size and sex classification of hybrid chicken must be conducted to validate the results.

References

Chamary JV, and Hurst LD. 2009. The price of silent mutations. Scientific American. vol 300(6): 46–53.

Colmenero FJ. 2000. Relevant factors in strategies for fat reduction in meat products. Trends in Food Science & Technology. vol 11(2): 56–66. doi: https://doi.org/10.1016/S0924-2244(00)00042-X.

Direktorat Jenderal Peternakan dan Kesehatan Hewan. 2018. Statistik Peternakan dan Kesehatan Hewan 2018. Jakarta: Kementerian Pertanian Direktorat Jenderal Peternakan dan Kesehatan Hewan. http://ditjenpkh.pertanian.go.id.

Fadilah R, and Polana A. 2005. Panduan mengelola peternakan ayam broiler komersial. Jakarta: PT. Agromedia Pustaka. p 81.

Ferrini G, Manzanilla EG, Menoyo D, Esteve-Garcia E, Baucells MD, Barroeta AC. 2010. Effects of dietary n-3 fatty acids in fat metabolism and thyroid hormone levels when compared to dietary saturated fatty acids in chickens. Livestock Science. vol 131(2-3): 287–291. doi: https://doi.org/10.1016/j.livsci.2010.03.017.

Gesta S, Tseng YH, Kahn CR. 2007. Developmental origin of fat: tracking obesity to its source. Cell. vol 131(2): 242-256. doi: https://doi.org/10.1016/j.cell.2007.10.004.

Han Q, Wang SZ, Hiu G, Li H. 2011. Haplotypes at the 5′-Flanking Region of Peroxisome Proliferator-Activated Receptor γ Gene and Their Association with the Growth and Body Composition Traits in Chickens. Agricultural Sciences in China. vol 10(2): 296–303. doi: https://doi.org/10.1016/S1671-2927(11)60007-2.

Harini M, and Astirin OP. 2009. Kadar kolesterol darah tikus putih (Rattus norvegicus) hiperkolesterolemik setelah perlakuan VCO. Bioteknologi Biotechnological Studies. vol 6(2): 53–58. doi: https://doi.org/10.13057/biotek/c060204.

Hattori H, Sato M, Masuoka K, Ishihara M, Kikuchi T, Matsui, T, Takase B, Ishizuka T, Kikuchi M, Fujikawa K, Ishihara M. 2004. Osteogenic potential of human adipose tissue-derived stromal cells as an alternative stem cell source. Cells Tissues Organs. vol 178(1): 2–12. doi: https://doi.org/10.1159/000081088.

Henuk YL, and Bakti D. 2016. Husbandry systems of keeping native chickens in tropical areas of Indonesia. Proceeding of 1st International Conference on Tropical Animal Science and Production. July 26-29. Thailand: Suranaree University of Technology. ISBN 978-974-533-710-7. pp. 147–150.

Liang MJ, Wang ZP, Xu L, Leng L, Wang SZ, Luan P, Cao ZP, Li YM, Li H. 2015. Estimating the genetic parameters for liver fat traits in broiler lines divergently selected for abdominal fat. Genetics & Molecular Research. vol 14(3): 9646–9654. doi: https://doi.org/10.4238/2015.August.14.27.

Lu Q, Wen J, Zhang H. 2007. Effect of chronic heat exposure on fat deposition and meat quality in two genetic types of chicken. Poultry science. vol 86(6): 1059–1064. doi: https://doi.org/10.1093/ps/86.6.1059.

Maharatih NMD, Sukanata IW, Astawa IPA. 2017. Analisis performance usaha ternak ayam broiler pada model kemitraan dengan sistem open house (studi kasus di Desa Baluk Kecamatan Negara). Peternakan Tropika. vol 5(2): 407–416.

Mahardhika IWS, and Daryono BS. 2019. Phenotypic performance of kambro crossbreeds of female broiler cobb 500 and male pelung blirik hitam. Buletin Veteriner Udayana. vol 11(2): 188–202. doi: https://doi.org/10.24843/bulvet.2019.v11.i02.p12.

Meng H, Li H, Zhao JG, Gu ZL. 2005. Differential expression of peroxisome proliferator-activated receptors alpha and gamma gene in various chicken tissues. Domestic Animal Endocrinology. vol 28(1): 105–110. doi: https://doi.org/10.1016/j.domaniend.2004.05.003.

Parker, R. 2012. Aqualculture science. 3rd edition. New York: Cengage Learning. p. 281.

Peng Z, Mao X, Zhang J, Du G, Chen J. 2019. Effective biodegradation of chicken feather waste by co-cultivation of keratinase producing strains. Microbial cell factories. vol 18(84): 1–11. doi: https://doi.org/10.1186/s12934-019-1134-9.

Popkin BM. 2001. The nutrition transition and obesity in the developing world. The Journal of nutrition. vol 131(3): 871S–873S. doi: https://doi.org/10.1093/jn/131.3.871S.

Rosaiah K, Kumar PR, Singh KR, Satish SPS. 2014. Identification of citrullinaemia carrier and detection of a new silent mutation at 240bp position in ASS1 gene of normal Holstein cattle. Genetika. vol 46(2): 515–520. doi: https://doi.org/10.2298/GENSR1402515K.

Royan M, Meng GY, Othman F, Sazili AQ, Navidshad B. 2011. Effect of conjugated linoleic acid, fish oil, and soybean oil on PPARs (α and γ) mPNA expression in broiler chickens and their relation to bady fat deposits. International Journal of Molecular Science. vol 12(12): 8581–8595. doi: https://doi.org/10.3390/ijms12128581.

Sartika RAD. 2008. Pengaruh asam lemak jenuh, tidak jenuh dan asam lemak trans terhadap kesehatan. Kesmas: National Public Health Journal. vol 2(4): 154–160. doi: http://dx.doi.org/10.21109/kesmas.v2i4.258.

Sulistyoningsih M, Dzakiy MA, Nurwahyunani A. 2014. Optimalisasi feed additive herbal terhadap bobot badan, lemak abdominal, dan glukosa darah ayam broiler. Bioma: Jurnal Ilmiah Biologi. vol 3(2): 1–16. doi: http://dx.doi.org/10.26877/bioma.v3i2,%20Oktober.639.

Sun Y, Liu R, Lu X, Hu Y, Zhao G, Zheng M, Chen J, Wang H, Wen J. 2013. Associations of polymorphisms in four candidate genes with carcass and/or meat-quality traits in two meat-type chicken lines. Animal biotechnology. vol 24(1): 53–65. doi: https://doi.org/10.1080/10495398.2012.742909.

Takada I, and Kobayashi M. 2013. Structural Featutes and Transcriptional Activity of Chicken PPARs (α, β, and γ). PPAR Research. vol 2013: 1–7. doi: https://doi.org/10.1155/2013/186312.

Tůmová E, and Teimouri A. 2010. Fat deposition in the broiler chicken: a review. Scientia Agriculturae Bohemica. vol 41(2): 121–128.

Wang G, Kim WK, Cline MA, Gilbert ER. 2017. Factors affecting adipose tissue development in chickens: A review. Poultry science. vol 96(10): 3687–3699. doi: https://doi.org/10.3382/ps/pex184.

Wang Y, Mu Y, Li H, Ding N, Wang Q, Wang Y, Wang S, Wang, N. 2008. Peroxisome proliferator-activated receptor-γ gene: a key regulator of adipocyte differentiation in chickens. Poultry Science. vol 87(2): 226–232. doi: https://doi.org/10.3382/ps.2007-00329.

Wu GQ, Deng XM, Li JY, Li N, Yang N. 2006. A potential molecular marker for selection against abdominal fatness in chickens. Poultry Science. vol 85(11): 1896–1899. doi: https://doi.org/10.1093/ps/85.11.1896.

Wu YJ, Wright JT, Young CR, Cartwright AL. 2000. Inhibition of chicken adipocyte differentiation by in vitro exposure to monoclonal antibodies against embryonic chicken adipocyte plasma membranes. Poultry science. vol 79(6): 892–900. doi: http://dx.doi.org/10.1093/ps/79.6.892.

Xu ZR, Wang MQ, Mao HX, Zhan XA, Hu CH. 2003. Effects of L-carnitine on growth performance, carcass composition, and metabolism of lipids in male broilers. Poultry Science. vol 82(3): 408–413. doi: https://doi.org/10.1093/ps/82.3.408.

Zhang Z, Miteva MA, Wang L, Alexov E. 2012. Analyzing effects of naturally occurring missense mutations. Functional Dynamics of Proteins. vol 2012: 1–15. doi: https://doi.org/10.1155/2012/805827.

Zhou J. 2008. Effect of dietary conjugated linoleic acid (CLA) on abdominal fat deposition in yellow-feather broiler chickens and its possible mechanism. Asian-Australasian Journal of Animal Sciences. vol 21(12): 1760–1765. doi: https://doi.org/10.5713/ajas.2008.80165.

Published
2019-12-29
Section
Research Articles
Abstract viewed = 373 times