COVID-19 Infection Wave Mortality from Surveillance Data in The Philippines Using Machine Learning

  • Julius R. Migriño College of Medicine, San Beda University, Manila, Philippines
    (PH)
  • Ani Regina U. Batangan College of Medicine, San Beda University, Manila, Philippines
    (PH)
  • Rizal Michael R. Abello College of Medicine, San Beda University, Manila, Philippines
    (PH)
Keywords: covid-19, decision trees, machine learning, mortality, surveillance

Abstract

The Philippines had several COVID-19 infection waves brought about by different strains and variants of SARS-CoV-2. This study aimed to describe COVID-19 outcomes by infection waves using machine learning. A cross-sectional surveillance data review design was employed using the DOH COVID Data Drop dataset as of September 24, 2022. The predominant variant(s) of concern divided the dataset into time intervals representing the infection waves: ancestral (A0), Alpha/Beta (AB), Delta (D), and Omicron (O). Descriptive statistics and machine learning models were generated from each infection. The final data set consisted of 3,896,206 cases wherein 98.39% of cases recovered while 1.61% died. The highest and lowest CFR was observed during the ancestral wave (2.49) and the Omicron wave (0.61%), respectively. In all four data sets, higher age groups had higher CFRs, and F-score and specificity were highest using naïve Bayes. Area under the curve (AUC) was highest in the naïve Bayes models for the A0, AB and D models, while sensitivity was highest in the decision tree models for the A0, AB and O models. The ancestral, Alpha/Beta and Delta variants seem to have similar transmission and mortality profiles, while the Omicron variant caused lesser deaths despite increased transmissibility.

ag_julios.jpg

Downloads

Download data is not yet available.

References

Argosino, F. (2021, November 9). COVID-19 response: A timeline of community quarantine, lockdowns, alert levels. Manila Bulletin. https://mb.com.ph/2021/11/09/covid-19-response-a-timeline-of-community-quarantine-lockdowns-alert-levels/

Bhattacharyya, R. P., & Hanage, W. P. (2022). Challenges in Inferring Intrinsic Severity of the SARS-CoV-2 Omicron Variant. New England Journal of Medicine, 386(7), e14. https://doi.org/10.1056/NEJMp2119682

Bhopal, S. S., & Bhopal, R. (2020). Sex differential in COVID-19 mortality varies markedly by age. The Lancet, 396(10250), 532–533. https://doi.org/10.1016/S0140-6736(20)31748-7

Carbonell, R., Urgelés, S., Rodríguez, A., Bodí, M., Martín-Loeches, I., Solé-Violán, J., Díaz, E., Gómez, J., Trefler, S., Vallverdú, M., Murcia, J., Albaya, A., Loza, A., Socias, L., Ballesteros, J. C., Papiol, E., Viña, L., Sancho, S., Nieto, M., COVID-19 SEMICYUC Working Group. (2021). Mortality comparison between the first and second/third waves among 3,795 critical COVID-19 patients with pneumonia admitted to the ICU: A multicentre retrospective cohort study. The Lancet Regional Health. Europe, 11, 100243. https://doi.org/10.1016/j.lanepe.2021.100243

CDC. (2022, December 28). Risk for COVID-19 Infection, Hospitalization, and Death By Age Group. Centers for Disease Control and Prevention. https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/hospitalization-death-by-age.html

Christensen, P. A., Olsen, R. J., Long, S. W., Snehal, R., Davis, J. J., Saavedra, M. O., Reppond, K., Shyer, M. N., Cambric, J., Gadd, R., Thakur, R. M., Batajoo, A., Mangham, R., Pena, S., Trinh, T., Kinskey, J. C., Williams, G., Olson, R., Gollihar, J., & Musser, J. M. (2022). Signals of Significantly Increased Vaccine Breakthrough, Decreased Hospitalization Rates, and Less Severe Disease in Patients with Coronavirus Disease 2019 Caused by the Omicron Variant of Severe Acute Respiratory Syndrome Coronavirus 2 in Houston, Texas. The American Journal of Pathology, 192(4), 642–652. https://doi.org/10.1016/j.ajpath.2022.01.007

DOH. (2020). Guidelines on the Risk-Based Public Health Standards for COVID-19 Mitigation (Administrative Order No. 2020-0015). Department of Health. https://www.doh.gov.ph/sites/default/files/health-update/ao2020-0015.pdf

DOH. (2022, October 7). COVID-19 Tracker | Department of Health website. https://doh.gov.ph/covid19tracker

DOH. (2023, February 5). Updates on COVID-19 Vaccines | COVID-19 Vaccination Dashboard. https://doh.gov.ph/vaccines

Endeshaw, Y., & Campbell, K. (2022). Advanced age, comorbidity and the risk of mortality in COVID-19 infection. Journal of the National Medical Association, 114(5), 512–517. https://doi.org/10.1016/j.jnma.2022.06.005

Esper, F. P., Adhikari, T. M., Tu, Z. J., Cheng, Y.-W., El-Haddad, K., Farkas, D. H., Bosler, D., Rhoads, D., Procop, G. W., Ko, J. S., Jehi, L., Li, J., & Rubin, B. P. (2023). Alpha to Omicron: Disease Severity and Clinical Outcomes of Major SARS-CoV-2 Variants. The Journal of Infectious Diseases, 227(3), 344–352. https://doi.org/10.1093/infdis/jiac411

Hu, Z., Huang, X., Zhang, J., Fu, S., Ding, D., & Tao, Z. (2022). Differences in Clinical Characteristics Between Delta Variant and Wild-Type SARS-CoV-2 Infected Patients. Frontiers in Medicine, 8. https://www.frontiersin.org/articles/10.3389/fmed.2021.792135

Hui, K. P. Y., Ho, J. C. W., Cheung, M., Ng, K., Ching, R. H. H., Lai, K., Kam, T. T., Gu, H., Sit, K.-Y., Hsin, M. K. Y., Au, T. W. K., Poon, L. L. M., Peiris, M., Nicholls, J. M., & Chan, M. C. W. (2022). SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo. Nature, 603(7902), Article 7902. https://doi.org/10.1038/s41586-022-04479-6

Jiang, Y., Laranjo, J. R., & Thomas, M. (2022). COVID-19 lockdown policy and heterogeneous responses of urban mobility: Evidence from the Philippines. PLOS ONE, 17(6), e0270555. https://doi.org/10.1371/journal.pone.0270555

Johnson, A. G., Amin, A., Ali, A., & et al. (2022). COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence—25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR. Morbidity and Mortality Weekly Report, 71. https://doi.org/10.15585/mmwr.mm7104e2

Khera, N., Santesmasses, D., Kerepesi, C., & Gladyshev, V. N. (2021). COVID-19 mortality rate in children is U-shaped. Aging (Albany NY), 13(16), 19954–19962. https://doi.org/10.18632/aging.203442

Kläser, K., Molteni, E., Graham, M., Canas, L. S., Österdahl, M. F., Antonelli, M., Chen, L., Deng, J., Murray, B., Kerfoot, E., Wolf, J., May, A., Fox, B., Capdevila, J., Modat, M., Hammers, A., Spector, T. D., Steves, C. J., Sudre, C. H., Duncan, E. L. (2022). COVID-19 due to the B.1.617.2 (Delta) variant compared to B.1.1.7 (Alpha) variant of SARS-CoV-2: A prospective observational cohort study. Scientific Reports, 12(1), Article 1. https://doi.org/10.1038/s41598-022-14016-0

Lewnard, J. A., Hong, V. X., Patel, M. M., Kahn, R., Lipsitch, M., & Tartof, S. Y. (2022). Clinical outcomes associated with SARS-CoV-2 Omicron (B.1.1.529) variant and BA.1/BA.1.1 or BA.2 subvariant infection in Southern California. Nature Medicine, 28(9), Article 9. https://doi.org/10.1038/s41591-022-01887-z

Lorente-González, M., Suarez-Ortiz, M., & Landete, P. (2022). Evolution and Clinical Trend of SARS-CoV-2 Variants. Open Respiratory Archives, 4(2), 100169. https://doi.org/10.1016/j.opresp.2022.100169

Mahdavi, M., Choubdar, H., Zabeh, E., Rieder, M., Safavi-Naeini, S., Jobbagy, Z., Ghorbani, A., Abedini, A., Kiani, A., Khanlarzadeh, V., Lashgari, R., & Kamrani, E. (2021). A machine learning based exploration of COVID-19 mortality risk. PLOS ONE, 16(7), e0252384. https://doi.org/10.1371/journal.pone.0252384

Malundo, A. F. G., Abad, C. L. R., Salamat, M. S. S., Sandejas, J. C. M., Poblete, J. B., Planta, J. E. G., Morales, S. J. L., Gabunada, R. R. W., Evasan, A. L. M., Cañal, J. P. A., Santos, J. A., Manto, J. T., Mercado, M. E. P., Rojo, R. D., Ornos, E. D. B., & Alejandria, M. M. (2022). Predictors of mortality among inpatients with COVID-19 infection in a tertiary referral center in the Philippines. IJID Regions, 4, 134–142. https://doi.org/10.1016/j.ijregi.2022.07.009

Migriño, J. R., & Batangan, A. R. U. (2021). Using machine learning to create a decision tree model to predict outcomes of COVID-19 cases in the Philippines. Western Pacific Surveillance and Response, 12(3), Article 3. https://doi.org/10.5365/wpsar.2021.12.3.831

Mohsin, M., & Mahmud, S. (2022). Omicron SARS-CoV-2 variant of concern: A review on its transmissibility, immune evasion, reinfection, and severity. Medicine, 101(19), e29165. https://doi.org/10.1097/MD.0000000000029165

Noy, O., Coster, D., Metzger, M., Atar, I., Shenhar-Tsarfaty, S., Berliner, S., Rahav, G., Rogowski, O., & Shamir, R. (2022). A machine learning model for predicting deterioration of COVID-19 inpatients. Scientific Reports, 12(1), Article 1. https://doi.org/10.1038/s41598-022-05822-7

Painuli, D., Mishra, D., Bhardwaj, S., & Aggarwal, M. (2021). Forecast and prediction of COVID-19 using machine learning. Data Science for COVID-19, 381–397. https://doi.org/10.1016/B978-0-12-824536-1.00027-7

Pan, J., St. Pierre, J. M., Pickering, T. A., Demirjian, N. L., Fields, B. K. K., Desai, B., & Gholamrezanezhad, A. (2020). Coronavirus Disease 2019 (COVID-19): A Modeling Study of Factors Driving Variation in Case Fatality Rate by Country. International Journal of Environmental Research and Public Health, 17(21), 8189. https://doi.org/10.3390/ijerph17218189

Rashedi, R., Samieefar, N., Akhlaghdoust, M., Mashhadi, M., Darzi, P., & Rezaei, N. (2022). Delta Variant: The New Challenge of COVID-19 Pandemic, an Overview of Epidemiological, Clinical, and Immune Characteristics. Acta Bio Medica : Atenei Parmensis, 93(1), e2022179. https://doi.org/10.23750/abm.v93i1.12210

Re3data.Org: GISAID. (2022a, October 8). Global COVID-19 submission tracker. GISAID; re3data.org - Registry of Research Data Repositories. https://gisaid.org/submission-tracker-global/

Re3data.Org: GISAID. (2022b, October 8). hCoV-19 Variants Dashboard. GISAID; re3data.org - Registry of Research Data Repositories. https://gisaid.org/hcov-19-variants-dashboard/

Sánchez-Montañés M, Rodríguez-Belenguer P, Serrano-López AJ, Soria-Olivas E, Alakhdar-Mohmara Y. Machine learning for mortality analysis in patients with COVID-19. Int J Environ Res Public Health. 2020. November 12;17(22):8386. 10.3390/ijerph17228386

Serrano, L. G. (2021). Grokking machine learning. Manning Publications.

SeyedAlinaghi, S., Mirzapour, P., Dadras, O., Pashaei, Z., Karimi, A., MohsseniPour, M., Soleymanzadeh, M., Barzegary, A., Afsahi, A. M., Vahedi, F., Shamsabadi, A., Behnezhad, F., Saeidi, S., Mehraeen, E., & Shayesteh Jahanfar. (2021). Characterization of SARS-CoV-2 different variants and related morbidity and mortality: A systematic review. European Journal of Medical Research, 26(1), 51. https://doi.org/10.1186/s40001-021-00524-8

Stein, C., Nassereldine, H., Sorensen, R. J. D., Amlag, J. O., Bisignano, C., Byrne, S., Castro, E., Coberly, K., Collins, J. K., Dalos, J., Daoud, F., Deen, A., Gakidou, E., Giles, J. R., Hulland, E. N., Huntley, B. M., Kinzel, K. E., Lozano, R., Mokdad, A. H., Lim, S. S. (2023). Past SARS-CoV-2 infection protection against re-infection: A systematic review and meta-analysis. The Lancet, 0(0). https://doi.org/10.1016/S0140-6736(22)02465-5

Talabis, D. A. S., Babierra, A. L., Buhat, C. A. H., Lutero, D. S., Quindala, K. M., & Rabajante, J. F. (2021). Local government responses for COVID-19 management in the Philippines. BMC Public Health, 21(1), Article 1. https://doi.org/10.1186/s12889-021-11746-0

Venkatasubramaniam, A., Wolfson, J., Mitchell, N., Barnes, T., JaKa, M., & French, S. (2017). Decision trees in epidemiological research. Emerging Themes in Epidemiology, 14(1), 11. https://doi.org/10.1186/s12982-017-0064-4

Wang, C., Liu, B., Zhang, S., Huang, N., Zhao, T., Lu, Q., & Cui, F. (2022). Differences in incidence and fatality of COVID‐19 by SARS‐CoV‐2 Omicron variant versus Delta variant in relation to vaccine coverage: A world‐wide review. Journal of Medical Virology, 10.1002/jmv.28118. https://doi.org/10.1002/jmv.28118

WHO. (2022, October 4). Tracking SARS-CoV-2 variants. World Health Organization. https://www.who.int/activities/tracking-SARS-CoV-2-variants

WHO. (2023). WHO Coronavirus Disease (COVID-19) Dashboard [Dashboard]. WHO Coronavirus Disease (COVID-19) Dashboard. https://covid19.who.int

Wolter, N., Jassat, W., Walaza, S., Welch, R., Moultrie, H., Groome, M., Amoako, D. G., Everatt, J., Bhiman, J. N., Scheepers, C., Tebeila, N., Chiwandire, N., Plessis, M. du, Govender, N., Ismail, A., Glass, A., Mlisana, K., Stevens, W., Treurnicht, F. K., Cohen, C. (2022). Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: A data linkage study. The Lancet, 399(10323), 437–446. https://doi.org/10.1016/S0140-6736(22)00017-4

Yadaw, A. S., Li, Y., Bose, S., Iyengar, R., Bunyavanich, S., & Pandey, G. (2020). Clinical features of COVID-19 mortality: Development and validation of a clinical prediction model. The Lancet Digital Health, 2(10), e516–e525. https://doi.org/10.1016/S2589-7500(20)30217-X

Published
2024-08-31
How to Cite
Migriño, J. R., Batangan, A. R. U., & Abello, R. M. R. (2024). COVID-19 Infection Wave Mortality from Surveillance Data in The Philippines Using Machine Learning. Diversity: Disease Preventive of Research Integrity, 5(1), 10-21. https://doi.org/10.24252/diversity.v5i1.49508
Section
Article
Abstract viewed = 47 times