
Volume 9, Nomor. 2, Oktober 2024

P –ISSN : 2541-1179, E-ISSN : 2581-1711

OJS :http://journal.uin-alauddin.ac.id/index.php/instek/index
Email : instek@uin-alauddin.ac.id

385

Optimizing CNN Performance for AI-Generated Image

Classification: A Comparative Study of Architectures and

Optimizers Using K-Fold Cross-Validation

FRANSISCUS ROLANDA MALAU*1
1Ilmu Komputer, Fakultas Teknologi Informasi, Universitas Nusa Mandiri,

Indonesia

Email: 114220018@nusamandiri.ac.id

Abstract

This study investigates CNN optimization for classifying AI-generated images.

Using the CIFAKE dataset (60,000 real and 60,000 AI-generated images), we

evaluated four CNN configurations with varying complexity and four optimization

algorithms through 5-fold cross-validation. Our findings show Configuration 4 (4

Conv, 2 MaxPool) with Adam optimizer achieved the highest validation accuracy

(0.8368±0.0135). Adam demonstrated consistent performance across architectures,

while SGD showed strong but variable results improving with model complexity.

Adagrad and Adadelta consistently underperformed. The final model achieved

85.28% test accuracy with balanced precision (0.8531) and recall (0.8528). Results

indicate more complex architectures combined with adaptive optimizers like Adam

provide superior performance for AI-generated image classification, with the

balance between model complexity and optimizer selection being crucial. The

consistent performance across real and fake categories demonstrates this approach's

robustness for deepfake detection applications.

Keywords: CIFAKE Dataset, Convolutional Neural Network, Image

Classification, K-Fold Cross-Validation, Optimization Algorithms

1. INTRODUCTION

The rapid development of AI technology has enabled the creation of highly

realistic images, posing new challenges in the field of image classification and

verification. The proliferation of AI-generated content raises significant concerns

regarding misinformation, digital forgery, and unauthorized content creation

(LeCun et al., 2015). Convolutional Neural Networks (CNNs) have proven highly

effective in image processing tasks, but their optimization for detecting AI-

generated images requires further investigation into architectural configurations and

training methodologies (Guera and Delp, 2018).

The detection of AI-generated content has been approached through various

methodologies, from statistical pattern analysis of synthetic facial features (Jaiswal

et al., 2022) to deep learning techniques. While pattern-based approaches offer

interpretability benefits, neural network approaches can potentially capture more

subtle artifacts across diverse AI generation techniques.

http://journal.uin-alauddin.ac.id/index.php/instek/index
mailto:instek@uin-alauddin.ac.id

Volume 9, Nomor. 2, Oktober 2024

P –ISSN : 2541-1179, E-ISSN : 2581-1711

OJS :http://journal.uin-alauddin.ac.id/index.php/instek/index
Email : instek@uin-alauddin.ac.id

386

This study comprehensively evaluates the performance of various CNN

architectures in classifying AI-generated images. We utilize the CIFAKE dataset,

which contains 60,000 real photographs from the CIFAR-10 dataset and 60,000 AI-

generated images created using Stable Diffusion (Croce et al., 2022). This large-

scale, balanced dataset provides an ideal foundation for robust evaluation of CNN

performance in distinguishing between authentic and AI-generated content. Each

image is sized at 64×64 pixels, offering sufficient detail for meaningful feature

extraction while maintaining computational efficiency.

To ensure methodological rigor and statistical validity, we implement 5-fold

cross-validation across all experiments. This approach partitions the data into five

equal folds, with each fold serving as validation data once while the remaining folds

form the training set. This methodology substantially reduces the impact of data

partitioning variability, providing more reliable performance metrics compared to

single train-test splits (Kohavi, 1995).

The main contributions of this research include:

1. Comprehensive evaluation of four different CNN configurations with

varying complexity, demonstrating that higher architectural complexity

(Configuration 4 with 4 convolutional layers) achieves optimal performance

for AI-generated image detection.

2. Rigorous comparison of four popular optimization algorithms (SGD, Adam,

Adagrad, and Adadelta) across all configurations, revealing Adam's

consistent superiority and the variable effectiveness of other optimizers

depending on model complexity.

3. Evidence of the interplay between architectural complexity and optimizer

selection, indicating that both factors significantly influence model

performance in AI-generated image classification.

4. Practical insights into optimal CNN design principles for AI-generated

content detection, supported by robust statistical validation through k-fold

cross-validation.

Our CNN-based approach complements alternative detection methods such

as statistical techniques based on Benford's law, which have demonstrated

effectiveness in identifying GAN-generated images by analyzing pixel value

distributions (Bonettini et al., 2020). While statistical approaches offer

computational efficiency, our CNN methodology focuses on feature learning

capabilities that can potentially better adapt to evolving AI generation techniques.

The results of this study provide valuable guidance for developing more

accurate and efficient image classification systems, particularly in the context of

deepfake detection and image authenticity verification systems (Das et al., 2021;

Hao et al., 2022). As generative AI technologies continue to advance in capabilities

and accessibility, the need for reliable detection methods becomes increasingly

critical for maintaining digital media integrity and trust.

2. RESEARCH METHODOLOGY

This study employs a comprehensive experimental approach to evaluate the

performance of various Convolutional Neural Network (CNN) architectures for AI-

generated image classification. The methodology encompasses several key

http://journal.uin-alauddin.ac.id/index.php/instek/index
mailto:instek@uin-alauddin.ac.id

Volume 9, Nomor. 2, Oktober 2024

P –ISSN : 2541-1179, E-ISSN : 2581-1711

OJS :http://journal.uin-alauddin.ac.id/index.php/instek/index
Email : instek@uin-alauddin.ac.id

387

components, including dataset preparation, k-fold cross-validation, model

architecture design, and robust evaluation procedures (Das et al., 2021).

2.1. Dataset

The study utilizes the CIFAKE dataset, which contains 60,000 real

photographs from the CIFAR-10 dataset and 60,000 AI-generated images created

using Stable Diffusion (Croce et al., 2022). Each image has consistent dimensions

of 64×64 pixels in RGB format. The dataset is publicly available at

https://www.kaggle.com/datasets/birdy654/cifake-real-and-ai-generated-

synthetic-images.

The CIFAKE dataset provides several advantages for AI-generated image

classification research:

1. Balanced class distribution (equal numbers of real and AI-generated images)

2. Diverse content spanning multiple categories (animals, vehicles, everyday

objects)

3. Consistent generation methodology using state-of-the-art Stable Diffusion

models

4. Sufficient scale for robust statistical validation of classification methods

Figure 1. Example images from Real and AI-Generated Synthetic Images

The real images in the CIFAKE dataset come from the widely used CIFAR-

10 benchmark, while the fake images were generated using Stable Diffusion with

prompts derived from CIFAR-10 class names. This approach ensures that both real

and fake images contain similar subject matter, making the classification task

focused on detecting AI generation artifacts rather than content differences.

2.2. Data Preparation and Preprocessing

Our data preparation involved a systematic approach to ensure optimal

model training and evaluation across multiple experimental configurations.

2.2.1. Data Sampling and Split Methodology

For computational efficiency while maintaining statistical validity, we

sampled a balanced subset of 5,000 images (2,500 real and 2,500 fake) from the full

http://journal.uin-alauddin.ac.id/index.php/instek/index
mailto:instek@uin-alauddin.ac.id
https://www.kaggle.com/datasets/birdy654/cifake-real-and-ai-generated-synthetic-images
https://www.kaggle.com/datasets/birdy654/cifake-real-and-ai-generated-synthetic-images

Volume 9, Nomor. 2, Oktober 2024

P –ISSN : 2541-1179, E-ISSN : 2581-1711

OJS :http://journal.uin-alauddin.ac.id/index.php/instek/index
Email : instek@uin-alauddin.ac.id

388

CIFAKE dataset. We implemented a 70/15/15 split ratio for train/validation/test

partitioning, resulting in:

1. Training Set: 2,125 images (balanced between real and fake classes)

2. Validation Set: 375 images (balanced between real and fake classes)

3. Testing Set: 2,500 images (balanced between real and fake classes)

This stratified sampling approach maintains class balance across all

partitions while providing sufficient data for both training and rigorous evaluation.

2.2.2. K-Fold Cross-Validation

To ensure robust evaluation and minimize the impact of data partitioning

variability, we implemented 5-fold cross-validation for all experimental

configurations. This approach involves:

1. Partitioning the combined training and validation data into 5 equal folds

2. Performing 5 separate training runs, each using 4 folds for training and 1

fold for validation

3. Averaging performance metrics across all 5 runs to obtain more reliable

estimates

4. Calculating standard deviations to quantify the variability of model

performance

This methodology provides a more comprehensive assessment of model

performance than single train-test splits, particularly important for comparing

different CNN architectures and optimizers.

2.2.3. Image Preprocessing

All images underwent standardized preprocessing steps:

1. Normalization: Pixel values were normalized to the range [0, 1] by dividing

each pixel value by 255. This step helps stabilize the training process and

often leads to faster convergence.

2. One-Hot Encoding: Class labels were converted to one-hot encoded vectors

for compatibility with categorical cross-entropy loss function.

2.3. Convolutional Neural Network (CNN) Architecture

We designed and evaluated four different Convolutional Neural Network

(CNN) configurations to systematically investigate the impact of model complexity

on classification performance. These architectural choices were carefully

considered to span a range of complexity levels while maintaining consistent overall

structure.

Table 1. Evaluated Convolutional Neural Network (CNN) configurations.

Configuration Conv Layers Max Pooling FC Layers

1 1 1 2

2 2 1 2

3 3 2 2

4 4 2 2

The selection of these specific configurations was driven by several key

considerations:

http://journal.uin-alauddin.ac.id/index.php/instek/index
mailto:instek@uin-alauddin.ac.id

Volume 9, Nomor. 2, Oktober 2024

P –ISSN : 2541-1179, E-ISSN : 2581-1711

OJS :http://journal.uin-alauddin.ac.id/index.php/instek/index
Email : instek@uin-alauddin.ac.id

389

1. Progressive Complexity:

The progressive increase in convolutional layers (from 1 to 4) across

configurations allows us to systematically evaluate how increasing model

depth affects classification accuracy (Alzubaidi et al., 2021; Du et al., 2023).

This design approach enables us to identify the optimal balance between

model complexity and performance.

2. Layer Configuration Design:

Each configuration varies in the number of convolutional layers and

max pooling layers, while maintaining two fully connected layers at the end

of the network. Configuration 1 represents a minimal architecture with a

single convolutional layer, while Configuration 4 implements a deeper

network with multiple convolutional blocks separated by pooling

operations.

All convolutional layers use 3×3 kernels with ReLU activation and

'same' padding. The first set of convolutional layers use 32 filters, while

deeper layers use 64 filters to increase feature representation capacity. The

fully connected portion consists of a 128-neuron dense layer with ReLU

activation, followed by a dropout layer (rate=0.5) for regularization, and a

final output layer with softmax activation for binary classification.

2.4. Optimizers

To explore the impact of different optimization algorithms on model

performance, we compared four popular optimizers:

1. Stochastic Gradient Descent (SGD): A classic optimization algorithm that

updates model parameters based on the gradient of the loss function. We

configured SGD with a learning rate of 0.01 and momentum of 0.9 to

accelerate convergence while reducing oscillation.

2. Adam: An adaptive learning rate optimization algorithm that computes

individual learning rates for different parameters using estimates of first and

second moments of the gradients. We used the default hyperparameters

(learning rate=0.001, beta_1=0.9, beta_2=0.999).

3. Adagrad: An optimizer with parameter-specific learning rates that adapts

the learning rate to the parameters, performing smaller updates for

frequently occurring features. This approach can be beneficial for dealing

with sparse data.

4. Adadelta: An extension of Adagrad that addresses its aggressive,

monotonically decreasing learning rate by restricting the window of

accumulated past gradients to a fixed size (Chen and Tsou, 2022; Hassan et

al., 2023; Choi et al., 2020; Ali and Kumar, 2022).

These optimizers represent a diverse range of approaches to navigating the

loss landscape, from simple gradient-based methods to sophisticated adaptive

techniques.

2.5. Training Procedure

The training process for all models followed these parameters:

1. Number of epochs: 20 (with early stopping)

http://journal.uin-alauddin.ac.id/index.php/instek/index
mailto:instek@uin-alauddin.ac.id

Volume 9, Nomor. 2, Oktober 2024

P –ISSN : 2541-1179, E-ISSN : 2581-1711

OJS :http://journal.uin-alauddin.ac.id/index.php/instek/index
Email : instek@uin-alauddin.ac.id

390

2. Batch size: 32

3. Loss function: Categorical crossentropy

4. Early stopping: Patience of 5 epochs monitoring validation loss

5. Model checkpoint: Saving the best model based on validation accuracy

The categorical crossentropy loss function is defined as:

𝐿 = − ∑𝐶
𝑖=1 𝑦𝑖 𝑙𝑜𝑔 (𝑦𝑖) (2)

where C is the number of classes, yi is the true label, and yi is the model's

prediction.

We implemented all models using Keras with TensorFlow backend and

conducted experiments on a system with multi-core CPU processing. This setup

allowed for efficient training and evaluation of multiple model configurations

across k-fold cross-validation runs.

2.6. Evaluation Metrics

Model performance was evaluated using a comprehensive set of metrics to

provide a thorough assessment of classification capability:

1. Accuracy: The proportion of correctly classified images across both classes

2. Precision: The ratio of true positives to all predicted positives

3. Recall: The ratio of true positives to all actual positives

4. F1-score: The harmonic mean of precision and recall

For each configuration and optimizer combination, we report both the mean

and standard deviation of these metrics across the 5 folds of cross-validation. This

approach provides robust estimates of expected performance and quantifies the

variability of each model configuration (Hicks et al., 2022).

For the final model evaluation, we also generate and analyze the confusion

matrix to understand the distribution of classification errors between real and AI-

generated images.

Through this systematic experimental design, we aim to identify the most

effective combination of CNN architecture and optimizer for AI-generated image

classification, providing insights that can guide the development of robust detection

systems (Bera and Shrivastava, 2020).

3. RESULTS AND DISCUSSION

This section presents the findings from our comprehensive experimental

evaluation of various Convolutional Neural Network (CNN) architectures and

optimizers for AI-generated image classification. We analyze the performance

patterns across different model configurations, interpret the results through k-fold

cross-validation, and discuss their implications for deepfake detection applications

(Althnian et al., 2021).

3.1. Performance Across CNN Configurations and Optimizers

Our comprehensive experiments with the CIFAKE dataset using k-fold

cross-validation revealed significant insights into CNN optimization for AI-

http://journal.uin-alauddin.ac.id/index.php/instek/index
mailto:instek@uin-alauddin.ac.id

Volume 9, Nomor. 2, Oktober 2024

P –ISSN : 2541-1179, E-ISSN : 2581-1711

OJS :http://journal.uin-alauddin.ac.id/index.php/instek/index
Email : instek@uin-alauddin.ac.id

391

generated image classification. This section presents the performance analysis

across different architectural configurations and optimization algorithms, followed

by an in-depth discussion of the findings.

Table 2. Performance metrics (accuracy, precision, recall, and F1-score) for

different CNN configurations and optimizer

Configuration Optimizer Accuracy Precision Recall F1-Score

Config 1 SGD 0.8064 ±

0.0109

0.8090 ±

0.0102

0.8064 ±

0.0109

0.8060 ±

0.0110

Config 1 Adam 0.8224 ±

0.0097

0.8241 ±

0.0089

0.8224 ±

0.0097

0.8220 ±

0.0100

Config 1 Adagrad 0.7064 ±

0.0301

0.7211 ±

0.0266

0.7064 ±

0.0301

0.7027 ±

0.0343

Config 1 Adadelta 0.6412 ±

0.0219

0.6489 ±

0.0217

0.6412 ±

0.0219

0.6402 ±

0.0217

Config 2 SGD 0.8072 ±

0.0248

0.8094 ±

0.0226

0.8072 ±

0.0248

0.8064 ±

0.0255

Config 2 Adam 0.8060 ±

0.0125

0.8115 ±

0.0149

0.8060 ±

0.0125

0.8052 ±

0.0126

Config 2 Adagrad 0.7216 ±

0.0276

0.7349 ±

0.0132

0.7216 ±

0.0276

0.7179 ±

0.0333

Config 2 Adadelta 0.6364 ±

0.0189

0.6478 ±

0.0212

0.6364 ±

0.0189

0.6340 ±

0.0180

Config 3 SGD 0.8240 ±

0.0255

0.8267 ±

0.0263

0.8240 ±

0.0255

0.8238 ±

0.0255

Config 3 Adam 0.8252 ±

0.0179

0.8282 ±

0.0159

0.8252 ±

0.0179

0.8250 ±

0.0182

http://journal.uin-alauddin.ac.id/index.php/instek/index
mailto:instek@uin-alauddin.ac.id

Volume 9, Nomor. 2, Oktober 2024

P –ISSN : 2541-1179, E-ISSN : 2581-1711

OJS :http://journal.uin-alauddin.ac.id/index.php/instek/index
Email : instek@uin-alauddin.ac.id

392

Config 3 Adagrad 0.7040 ±

0.0213

0.7146 ±

0.0149

0.7040 ±

0.0213

0.7011 ±

0.0248

Config 3 Adadelta 0.6088 ±

0.0155

0.6311 ±

0.0251

0.6088 ±

0.0155

0.6008 ±

0.0277

Config 4 SGD 0.8260 ±

0.0197

0.8290 ±

0.0184

0.8260 ±

0.0197

0.8257 ±

0.0198

Config 4 Adam 0.8368 ±

0.0135

0.8374 ±

0.0131

0.8368 ±

0.0135

0.8368 ±

0.0135

Config 4 Adagrad 0.7036 ±

0.0222

0.7180 ±

0.0119

0.7036 ±

0.0222

0.6998 ±

0.0271

Config 4 Adadelta 0.6112 ±

0.0239

0.6155 ±

0.0233

0.6112 ±

0.0239

0.5887 ±

0.0649

The highest performance was achieved by Configuration 4 with Adam

optimizer, reaching an accuracy of 0.8368 ± 0.0135 and F1-Score of 0.8368 ±

0.0135. This finding suggests that increased architectural complexity (4

convolutional layers with 2 max-pooling layers) provides enhanced feature

extraction capability, particularly when paired with an appropriate optimizer.

Figure 2. Performance comparison of different CNN configurations across

optimizers.

http://journal.uin-alauddin.ac.id/index.php/instek/index
mailto:instek@uin-alauddin.ac.id

Volume 9, Nomor. 2, Oktober 2024

P –ISSN : 2541-1179, E-ISSN : 2581-1711

OJS :http://journal.uin-alauddin.ac.id/index.php/instek/index
Email : instek@uin-alauddin.ac.id

393

Figure 2 illustrates the comparative performance across all configurations

and optimizers, highlighting several key patterns. Adam and SGD consistently

outperformed Adagrad and Adadelta across all architectural configurations.

Furthermore, while Adam maintained relatively consistent performance across

different architectures, SGD showed more variability, with its performance

generally improving as model complexity increased.

3.2. Optimal Model Performance

Based on the cross-validation results, we selected Configuration 4 with the

Adam optimizer for our final model. This model was trained on the entire training

set and evaluated on the held-out test set. The final model achieved the following

performance metrics:

● Test accuracy: 0.8528

● Test precision: 0.8531

● Test recall: 0.8528

● Test F1-score: 0.8528

The confusion matrix for the optimal model (Figure 3) reveals balanced

performance across both real and fake image categories. The model correctly

identified 1,085 real images (true positives) and 1,047 fake images (true negatives),

with comparable false positive (165) and false negative (203) rates. This balanced

error distribution indicates the model's ability to detect both classes with similar

efficacy, an important characteristic for practical deployment in content verification

systems.

Figure 3. Confusion matrix for the optimal model (Configuration 4 with Adam

optimizer).

http://journal.uin-alauddin.ac.id/index.php/instek/index
mailto:instek@uin-alauddin.ac.id

Volume 9, Nomor. 2, Oktober 2024

P –ISSN : 2541-1179, E-ISSN : 2581-1711

OJS :http://journal.uin-alauddin.ac.id/index.php/instek/index
Email : instek@uin-alauddin.ac.id

394

3.3. Learning Dynamics

The learning curves for the optimal model (Figure 4) provide valuable

insights into the training process. While training accuracy consistently increased

throughout the training period, validation accuracy plateaued after approximately 8

epochs. The growing gap between training and validation curves in later epochs

indicates the onset of overfitting, highlighting the importance of early stopping

mechanisms to prevent performance degradation on unseen data.

Figure 4. Learning curves showing training and validation accuracy/loss over

epochs.

3.4. Impact of Architectural Complexity and Optimizer Selection

Our experiments revealed a clear relationship between architectural

complexity and classification performance. When comparing the progression from

Configuration 1 (simplest) to Configuration 4 (most complex), we observed a

general trend of increasing performance, particularly with Adam and SGD

optimizers. However, this improvement showed diminishing returns, with the

performance gain between Configurations 3 and 4 being smaller than between

earlier configurations.

http://journal.uin-alauddin.ac.id/index.php/instek/index
mailto:instek@uin-alauddin.ac.id

Volume 9, Nomor. 2, Oktober 2024

P –ISSN : 2541-1179, E-ISSN : 2581-1711

OJS :http://journal.uin-alauddin.ac.id/index.php/instek/index
Email : instek@uin-alauddin.ac.id

395

Figure 5. Heatmap visualization of F1-scores across different configurations and

optimizers.

The heatmap visualization (Figure 5) provides a comprehensive view of

how architectural complexity interacts with optimizer selection. This visualization

clearly demonstrates that while Adam and SGD maintained strong performance

across configurations, Adagrad and Adadelta consistently underperformed

regardless of architecture. This finding suggests that optimizer selection may be

equally or more important than architectural complexity for AI-generated image

classification tasks.

3.5. Discussion

Our findings reveal that Configuration 4's superior performance stems from

its ability to capture subtle artifacts in AI-generated images through deeper

convolutional layers. Adam optimizer demonstrated remarkable consistency across

architectures due to its adaptive learning rate mechanics, which effectively navigate

complex loss landscapes. Surprisingly, SGD performed well despite its simplicity,

likely due to its ability to escape sharp local minima.

The poor performance of Adadelta contradicts our preliminary findings with

limited data, emphasizing the importance of robust methodology and sufficient data

volume. The balanced detection rates between real and fake categories, as shown in

our confusion matrix, ensure reliability for content verification applications where

both false positives and negatives have significant consequences. While we used

64×64 pixel images, our principles likely apply to higher-resolution images with

appropriate computational efficiency considerations.

4. CONCLUSION

This study comprehensively evaluated CNN performance for AI-generated

image classification using k-fold cross-validation on the CIFAKE dataset.

http://journal.uin-alauddin.ac.id/index.php/instek/index
mailto:instek@uin-alauddin.ac.id

Volume 9, Nomor. 2, Oktober 2024

P –ISSN : 2541-1179, E-ISSN : 2581-1711

OJS :http://journal.uin-alauddin.ac.id/index.php/instek/index
Email : instek@uin-alauddin.ac.id

396

Configuration 4 with Adam optimizer achieved optimal performance

(0.8368±0.0135 validation accuracy, 85.28% test accuracy). Adam delivered

consistent performance across architectures, while SGD showed strong but variable

results. Adagrad and Adadelta consistently underperformed.

Learning dynamics analysis highlighted the importance of early stopping, as

validation performance plateaued after approximately 8 epochs. The balanced

performance across real and fake categories demonstrates the approach's reliability

for deepfake detection applications.

While more complex architectures performed better, the diminishing returns

between Configurations 3 and 4 suggest a practical complexity limit. Future

research should explore transfer learning, attention mechanisms, ensemble

methods, and evaluation on emerging AI-generated content. Our findings provide a

foundation for effective detection systems that can help maintain digital media

integrity in an era of rapidly evolving generative AI technologies.

REFERENCES

Ali MEA, Kumar D. 2022. The Impact of Optimization Algorithms on The

Performance of Face Recognition Neural Networks. Journal of Advanced

Engineering and Computing. 6(4):248.

Althnian A, AlSaeed D, Al-Baity H, Samha A, Dris AB, Alzakari N, Abou Elwafa

A, Kurdi H. 2021. Impact of Dataset Size on Classification Performance: An

Empirical Evaluation in the Medical Domain. Applied Sciences. 11(2):796.

Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O,

Santamaría J, Fadhel MA, Al-Amidie M, Farhan L. 2021. Review of deep

learning: concepts, CNN architectures, challenges, applications, future

directions. Journal of Big Data. 8(1):53.

Bera S, Shrivastava VK. 2020. Analysis of various optimizers on deep

convolutional neural network model in the application of hyperspectral

remote sensing image classification. International Journal of Remote Sensing.

41(7):2664-2683.

Bonettini A, Bestagini V, Milani S, Tubaro S. 2020. On the use of Benford's law to

detect GAN-generated images. Proceedings of IEEE International

Conference on Pattern Recognition. January 2020. Milan: IEEE. pp 5495-

5500.

Chen F, Tsou JY. 2022. Assessing the effects of convolutional neural network

architectural factors on model performance for remote sensing image

classification: An in-depth investigation. International Journal of Applied

Earth Observation and Geoinformation. 112:102865.

Choi D, Shallue CJ, Nado Z, Lee J, Maddison CJ, Dahl GE. 2020. On Empirical

Comparisons of Optimizers for Deep Learning. arXiv preprint

arXiv:1910.05446.

Croce F, Noroozi M, Scimeca M, Birchfield S. 2022. CIFAKE: Image

Classification and Explainable Identification of AI-Generated Synthetic

Images. IEEE Access. 10:127154-127164.

http://journal.uin-alauddin.ac.id/index.php/instek/index
mailto:instek@uin-alauddin.ac.id

Volume 9, Nomor. 2, Oktober 2024

P –ISSN : 2541-1179, E-ISSN : 2581-1711

OJS :http://journal.uin-alauddin.ac.id/index.php/instek/index
Email : instek@uin-alauddin.ac.id

397

Das S, Seferbekov S, Datta A, Islam MS, Amin MR. 2021. Towards Solving the

DeepFake Problem: An Analysis on Improving DeepFake Detection using

Dynamic Face Augmentation. arXiv preprint arXiv:2102.09603.

Du X, Sun Y, Song Y, Sun H, Yang L. 2023. A Comparative Study of Different

CNN Models and Transfer Learning Effect for Underwater Object

Classification in Side-Scan Sonar Images. Remote Sensing. 15(3):593.

Guera D, Delp EJ. 2018. Deepfake Video Detection Using Recurrent Neural

Networks. Proceedings of the 15th IEEE International Conference on

Advanced Video and Signal Based Surveillance (AVSS). November 2018.

Auckland: IEEE. pp 1-6.

Hao H, Parmar D, Sitaram S, Raja S, Yamasaki T, Aizawa K. 2022. Deepfake

Detection Using Multiple Data Modalities. In: Rathgeb C, Tolosana R, Vera-

Rodriguez R, Busch C (eds). Handbook of Digital Face Manipulation and

Detection. Cham: Springer International Publishing. pp 235-254.

Hassan E, Shams MY, Hikal NA, Elmougy S. 2023. The effect of choosing

optimizer algorithms to improve computer vision tasks: a comparative study.

Multimedia Tools and Applications. 82(11):16591-16633.

Hicks SA, Strümke I, Thambawita V, Hammou M, Riegler MA, Halvorsen P,

Parasa S. 2022. On evaluation metrics for medical applications of artificial

intelligence. Scientific Reports. 12(1):5979.

Jaiswal A, Sabharwal S, Javed AR, Singh R. 2022. AI-generated synthetic face

detection: A pattern analysis-based approach. Computers & Electrical

Engineering. 104:108383.

Kohavi R. 1995. A study of cross-validation and bootstrap for accuracy estimation

and model selection. Proceedings of the 14th International Joint Conference

on Artificial Intelligence (IJCAI). August 1995. Montreal: Morgan

Kaufmann. pp 1137-1143.

LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature. 521(7553):436-444.

http://journal.uin-alauddin.ac.id/index.php/instek/index
mailto:instek@uin-alauddin.ac.id

