

Aktivitas Antibakteri Ekstrak dan Bakteri Endofit Makro Alga Caulerpa racemosa L. Asal Perairan Puntondo Terhadap Staphylococcus areus dan Methicilin Resistant Staphylococcus aureus (MRSA)

EKA SUKMAWATY¹, MASHURI MASRI¹, SRI UTAMI PUTRI¹, NURZAKIYAH¹

Jurusan Biologi, Fak. Sains dan Teknologi, UIN Alauddin Makassar

Email: eka.sukmawaty@gmail.com

ABSTRAK

Pemanfaatan sumber daya laut untuk eksplorasi senyawa bioaktif memiliki potensi besar, salah satunya yaitu makro alga *Caulerpa racemosa*. Penelitian ini bertujuan untuk mengetahui aktivitas antibakteri ekstrak *Caulerpa racemosa* yang diambil dari perairan Puntondo Kabupaten Takalar dan mencari bakteri endofit yang dapat menghambat pertumbuhan *Staphylococcus aureus* dan MRSA. Digunakan etanol dan metanol untuk melarutkan ekstrak *Caulerpa racemosa* dilakukan dengan metode *disc diffusion* sedangkan identifikasi bakteri endofit dengan gen 16S rRNA. Hasil penelitian menunjukkan bahwa ekstrak metanol dan etanol *Caulerpa racemosa* mampu menghambat pertumbuhan *Staphylococcus aureus* dan MRSA. Bakteri endofit hanya mampu menghambat *Staphylococcus aureus*. Identifikasi molekuler terhadap tiga isolate yang memiliki penghambatan tertinggi yaitu *Bacillus kochi, Bacillus endophyticus* dan *Staphylococcus saprophyticus*.

Kata kunci: Staphylococcus aureus, MRSA, bakteri endofit, antibakteri

PENDAHULUAN

Indonesia merupakan negara maritim dengan kekayaan biota laut yang melimpah. Salah satu biota laut yang banyak dimanfaatkan adalah makroalga. Indonesia memiliki tidak kurang dari 628 jenis makroalga dari 8000 jenis makroalga yang ditemukan di seluruh dunia. Sebagian besar makroalga di Indonesia bernilai ekonomis tinggi yang dapat digunakan sebagai makanan dan obat-obatan secara tradisional (Luning 1990).

Pemanfaatan Makroalga sebagai bahan obat-obatan berhubungan dengan senyawa bioaktif yang terkandung di dalamnya. Bioaktif ini sangat bermanfaat bagi industri pengembangan farmasi sebagai antibakteri, anti-tumor, antikanker agrokimia terutama untuk industri antifeedant, fungisida dan herbisida (Putra, 2006). Besarnya potensi biota laut termasuk makroalga membuat para ilmuan dan produsen senyawa antibiotik dunia mulai melirik laut sebagai sumber antibiotik potensial. Hal ini disebabkan karena sebagian besar sumber daya alam di laut belum dieksploitasi secara maksimal dan juga kebutuhan dunia saat ini terhadap antibiotik jenis baru semakin mendesak, karena antibiotik standar yang ada sekarang semakin berkurang efektivitasnya karena banyak bakteri patogen yang sudah mulai resisten terhadap antibiotik

Salah satunya adalah bakteri MRSA (Methicillin-Resistant Staphylococcus aureus). Meskipun berdasarkan namanya MRSA berarti S. aureus yang resisten terhadap metisilin tetapi bukti empiris menunjukkan bahwa bakteri ini tidak hanya resisten terhadap metisilin melainkan juga resisten terhadap berbagai antimikroba atau bersifat multiresisten. Bakteri MRSA yang multiresisten mengakibatkan pemilihan antibiotik untuk terapi menjadi semakin sulit. Antibiotik pilihan untuk terapi infeksi MRSA adalah vankomisin, namun telah ditemukan penyebaran MRSA yang menurun kepekaannya terhadap vankomisin. Bahkan terapi terhadap infeksi MRSA menggunakan kombinasi antibiotik beberapa belum sepenuhnya berhasil. Sehingga eksplorasi sumber antibiotik baru sangat diperlukan.

Eksplorasi senyawa antiikrob dewasa ini juga telah berkembang ke arah pemanfaatan bakteri endofit. Bakteri endofit mempunyai potensi untuk menghasilkan senyawa yang

sama dengan inangnya sehingga menjadi peluang untuk mendapatkan senyawa bioaktif yang alami, murah dan ramah lingkungan serta efisien karena tidak memerlukan waktu dan luas lama ruang yang menumbuhkannya. Ini menjadikan mikroba endofit memiliki prospek yang baik dalam penemuan sumber-sumber senyawa bioaktif yang dalam perkembanagan lebih lanjut dapat dijadikan sebagai sumber penemuan obat berbagai macam penyakit untuk (Prihatiningtias, 2005).

Informasi pemanfaatan Caulerpa sebagai bakteri racemosa anti mengindikasikan bahwa di dalam Caulerpa terdapat senyawa racemosa antibiotik, sehingga mikroba endofit berpotensi untuk menghasilkan senyawa anti bakteri juga.Uraian ini menjadai dasar dilakukannya penelitian ini untuk mengetahui aktivitas antibakteri ekstrak Caulerpa racemosa yang diambil dari perairan Puntondo Kabupaten Takalar dan mencari bakteri endofit yang dapat menghambat pertumbuhan Staphylococcus aureus dan MRSA.

METODE PENELITIAN

Pengambilan Sampel. Sampel alga diambil tanpa memperhatikan umur. Sampel diambil pada kedalaman sekitar 1 m. Sampel yang telah diambil dibersihkan dari substratnya dan dicuci hingga bersih.

Isolasi bakteri endofit. Sampel Caulerpa racemosa yang diperoleh dari lapangan dicuci bersih dengan air mengalir. Selanjutnya dilakukan sterilisasi permukaan dengan cara merendam caulerpa dalam larutan natrium hipoklorit 1% 5 menit, alkhohol 70% 1 menit dan terakhir dibilas dengan akuades steril (Coombs and ranco, 2003). Caulerpa racemosa kemudian dihaluskan dengan mortar steril dengan kondisi aseptis. Dilakukan pengenceran bertingkat sampai 10⁴. Setiap pengenceran diinokulasikan dengan metode sebar pada media NA air laut. Inkubasi selama 24 jam. Koloni bakteri yang tumbuh dimurnikan dalam media NA agar miring sebagai stok.

Ekstraksi Sampel *Caulerpa racemosa.* Sampel dikeringkan di bawah panas matahari

selama \pm 4 hari. Sampel yang telah kering dipotong-potong kemudian dihaluskan dengan menggunakan blender hingga menjadi serbuk simplisia. Simplisia ditimbang sebanyak 50 gram dan dimasukkan ke dalam gelas erlenmeyer. Lalu dilakukan perendaman (maserasi) dengan larutan etanol metanol 70 % sebanyak 100 ml dan direndam selama 2 hari. Perendaman tersebut berfungsi untuk menyerap senyawa-senyawa organik yang terkandung dalam simplisia. Setelah 2 hari, larutan disaring menggunakan kertas saring dan dikeringkan dengan evaporator hingga terbentuk ekstrak kental

Uji Daya Hambat. Pengujian dilakukan secara in vitro dengan metode difusi agar menggunakan paperdisk. Suspensi bakteri S. Aureus dan MRSA dioleskan secara merata pada medium permukaan dengan menggunakan swab steril. Selanjutnya sebanyak 20 µL ekstrak makro alga diteteskan dan ditempelkan pada pada paperdisk permukaan medium NA yang telah diolesi suspensi bakteri. Untuk uji penghambatan bakteri endofit, sebnayak 30ul suspense bakteri endofit diteteskan dalam paperdisk yang telah ditempelkan pada media berisi bakteri uji. Selanjutnya, diinkubasi dengan suhu 37°C selama 24 dan 48 jam. Sebagai kontrol negatif digunakan aquades. Aktifitas penghambatan diamati selama 3 x 24 jam yang di tandai dengan terbentuknya zona bening disekitar kertas cakram.

Identifikasi Molekuler Bakteri Endofit Caulerpa racemosa. Identifikasi molekuler hanya dilakukan pada isolat bakteri yang mempunyai indeks penghambatan tertinggi. Isolat bakteri ini dideterminasi dengan menggunakan sekuen 16S-rRNA. Gen 16S-rRNA dianalisis secara lengkap di 1st BASE Malaysia. Analisis cluster pada sekuens tersebut dilakukan dengan program BLAST (Basic Local Aligmnet Search Tool) dari NCBI (National Center for Biotechnologhy Information) secara online pada website (http://www.ncbi.nlm.nih.gov).

HASIL DAN PEMBAHASAN

Isolasi bakteri endofit dari makroalga Caulerpa racemosa menghasilkan 22 isolat

berbeda. Dari hasil pengamatan makroskopik koloni, diketahui bahwa bakteri endofit *Caulerpa racemosa* memiliki ukuran dan bentuk koloni yang berbeda yaitu kecil, sedang, besar. Sedangkan bentuk koloni *Circular* dan *Irregular*, bentuk tepinya juga berbeda-beda yaitu *Entire*, *Undulate*, *Rhizoid*, *Lobate*, dan *Curled*. Untuk permukaan koloni

menunjukkan halus mengkilat, halus, berkerut dan kasar. Dan elevasi juga berbeda-beda yaitu *Flat, Raised, Umbunate*, dan *Conveks*. Hasil pewarnaan gram dari 12 isolat bakteri endofit terdapat 9 isolat merupakan bakteri Gram positif dan 3 isolat merupakan Gram negatif (Tabel 1).

Tabel 1. Hasil uji mikroskopik bakteri endofit makroalga Caulerpa racemosa

No.	Kode Isolat	Bentuk dan Penataan sel	Pewarnaan Gram
1	E.C1	Bacil	+
2	E.C2	Bacil	-
3	E.C3	Bacil	+
4	E.C4	Coccus	+
5	E.C5	Bacil	+
6	E.C6	Bacil	+
7	E.C7	Bacil	+
8	E.C8	Bacil	+
9	E.C9	Coccus	+
10	E.C10	Bacil	+
11	E.C11	Bacil	-
12	E.C12	Bacil	-

Aktivitas antimikrob ekstrak Caulerpa racemosa. Efek ekstrak makroalga Caulerpa racemosa terhadap bakteri Staphylococcus dan methicillin aureus resisten Staphylococcus aureus (MRSA) diektraksi menggunakan metode maserasi dengan memakai pelarut etanol dan metanol. . Kontrol positif menggunakan ampisilin. Ampisilin merupakan derivat penisilin yang merupakan kelompok antibiotik β –laktam yang memiliki spektrum antimikroba yang luas. Ampisilin efektif terhadap mikroba

Gram positif dan Gram negatif. Mekanisme kerja ampisilin yaitu menghambat sintesis dinding sel bakteri dengan cara menghambat pembentukan mukopeptida, karena sintesis dinding sel terganggu maka bakteri tersebut tidak mampu mengatasi perbedaan tekanan osmosis di luar dan di dalam sel yang mengakibatkan bakteri mati (Wattimena, 1987). Dari hasil uji ditemukan aktivitas paling tinggi yaitu pada ekstrak methanol seperti tertera pada Tabel 2.

Tabel 2. Penghambatan masing-masing ekstrak *Caulerpa racemosa* pada kedua bakteri uji setelah 3 x 24 Jam.

_	Indeks Penghambatan (IP)		
Pelarut	Staphylococcus aureus	Methicillin resisten Staphylococcus aureus	
Metanol	1,7	1,7	
Etanol	1	1,4	
Kontrol +	0,5	0,5	
Kontrol -	0	0,1	

Perbedaan zona hambat pada berbagai penelitian di atas karena adanya perbedaan kandungan zat antibakteri terhadap ekstrak masing-masing pelarut, sehingga

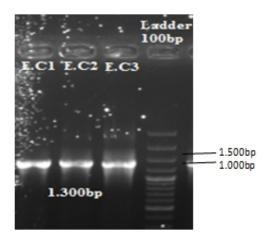
menyebabkan perbedaan kemampuan dalam menghambat pertumbuhan bakteri. Kemampuan ekstrak metanol menunjukan bahwa metanol adalah pelarut yang terbaik untuk ekstraksi.

Mekanisme kerja senyawa antibakteri makrolaga diduga dengan cara mengganggu komponen peptidoglikan pada sel bakteri, sehingga lapisan dinding sel tidak terbentuk secara utuh dan menyebabkan kematian sel tersebut. Efektifitas antibakteri dapat bereaksi pada beberapa target sasaran pada membran bakteri, sehingga menyebabkan kerusakan autolisis dan juga terhambatnya pertumbuhan atau bahkan kematian sel (Ahn dk, 2004). Menurut Abad pada tahun 2011, senyawa metabolit sekunder pada alga laut yang berpotensi sebagai antibakteri adalah peptida, fenol dan terpena.

Aktivitas antimikrob bakteri endofit Caulerpa racemosa. Berdasarkan pengamatan uji daya hambat pada hari pertama setelah diinkubasi selama 1 X 24 jam, isolat bakteri Staphlococcus aureus menunjukkan adanya zona bening disekitar paperdisk dengan ukuran indek penghambatan yang berbeda-beda sedangkan Isolat bakteri MRSA tidak menunjukkan adanya daya hambat. Pada hari kedua dengan masa inkubasi 2 X 24 jam, pada isolat bakteri Staphlococcus aureus diameter zona hambat mengecil terlihat dari daerah zona bening yang ada disekitar paperdisk, sedangkan pada isolat bakteri MRSA sama sekali tidak menunjukkan adanya zona hambat. Hari ketiga dalam masa inkubasi 3 X 24 jam, pada isolat bakteri Staphlococcus aureus sudah tidak ada lagi zona bening disekitar peper disk begitupun dengan isolat bakteri MRSA ini menunjukkan bahwa senyawa anti bakteri yang dihasilkan oleh bakteri endofit Caulerpa racemosa hanya bersifat bakteriostatis yang memiliki aktivitas menghambat pertumbuhan bakteri (menghambat perbanyakan populasi bakteri), namun tidak mematikan, mekanisme kerjanya yaitu dengan mengganggu sintesis protein pada bakteri penyebab penyakit. Hal ini diperlihatkan pada media uji pada hari pertama sampai ketiga semakin kecil indeks penghambatannya.

Menurut Mycek (2001), bahwa suatu antimikroba bersifat bakteriostatik iika senyawa antimikroba tersebut hanya mampu menghambat pertumbuhan bakteri pemberian senyawa terus dilakukan dan jika dihentikan atau habis, maka pertumbuhan dan perbanyakan dari bakteri akan kembali meningkat ditandai yang dengan berkurangnya diameter hambatan. zona Sebaliknya bersifat bakteriosida jika diamater zona hambatan meningkat, hal ini disebabkan karena senyawa ini mampu membunuh dan menghentikan aktivitas fisiologis dari bakteri, meskipun pemberian senyawa tersebut dihentikan.

Tabel 3. Pengamatan uji daya hambat bakteri endofit *Caulerpa racemosa* terhadap MRSA (Methicillin resistant *Staphylococcus aureus*) dan Staphylococcus aureus


		Indeks Penghambat (IP)			
	Bakteri Endofit	Staphylococcus aureus		MDCA	
No.	Caulerpa racemosa	Hari I	Hari II	MRSA	
1	E.C1	2	2	-	
2	E.C2	2	2	-	
3	E.C3	2	1,9	-	
4	E.C4	1,95	1,9	-	
5	E.C5	1,85	1,85	-	
6	E.C6	1,95	1,85	-	
7	E.C7	1,95	1,85	-	
8	E.C8	2	1,85	-	
9	E.C9	1,9	1,9	-	
10	E.C10	1,9	1,85	-	
11	E.C11	1,9	1,85	-	
12	E.C12	1,85	1,85	-	

Bakteri endofit dapat menghambat pertumbuhan bakteri patogen karena senyawa menghasilkan berupa senyawa metabolit sekunder yang merupakan senyawa bioaktif dan dapat berfungsi untuk membunuh Mikroba endofit patogen. mampu menghasilkan senyawa metabolit sekunder seperti alkaloid, terpen, steroid, flavonoid, kuinon, fenoldan lain sebagainya. Senyawasenyawa ini sebagian besar mempunyai potensi yang besar sebagai senyawa bioaktif (Tan dan Zou, 2001).

Mekanisme penghambatan pertumbuhan bakteri oleh metabolit sekunder dapat terjadi melalui penghambatan pembentukan senyawa penyusun dinding bakteri, meningkatkan permeabilitas membran sel sehingga sel kehilangan komponen penyusun sel dan menginaktivasi enzim (Reapina dan Elsadora, 2007).

Identifikasi Molekuler Bakteri Endofit Caulerpa racemosa. Identifikasi molekuler dilakukan pada isolat bakteri Caulerpa racemosa yang memiliki daya hambat tertinggi pada pertumbuhan bakteri Staphylococcus aureus yaitu pada isolat E.C1, E.C2 dan E.C3.

Gambar 1. Hasil elektroforesis dari ketiga sampel tersebut diketahui terdapat pita yang teresparasi dan sejajar dengan marker sekitar 1.300bp

Hasil analisis BLAST dari kedua isolat bakteri endofit menunjukkan bahwa spesies isolate E.C1 adalah bakteri *Bacillus kochi* dengan nila maximum scor 1947, total score 1947, query coverage 96% dan identities 95%. Sedangkn spesies isolate E.C2 adalah bakteri *Bacillus endophyticus* strain NM3E6 dengan nila maximum scor 2158, total score 2158, query coverage 93% dan identities 97%. Dan spesies isolate E.C3 adalah bakteri *Staphlococcus saprophyticus* strain FVR1 dengan nila maximum scor 822, total score 822, query coverage 89% dan identities 81%.

Bacillus kochii telah dilaporkan sebelumnya menghasilkan metabolit sekunder yang dapat menghambat pertumbuhan bakteri pathogen pada manusia dan memiliki antimikroba yang sangat baik terhadap

Ecercia coli, Klebsiella pneumonia dan Staphylococcus aureus (Chellaram dkk. 2013). Bakteri Bacillus endophyticus juga telah tidak hanya sebagai PGPR tetapi juga sebagai mikroorganisme industri potensial dan juga menghasilkan metabolit sekunder yang dapat menghambt pertumbuhan bakteri 2012). pathogen (Lee dkk, Kemudian diketahui pula bahwa senyawa antimikroba dihasilkan **Bacillus** yang sp. dapat menghambat pertumbuhan biofilm bakteri patogen oportunistik yaitu Bakteri Salmonella sp, Staphylococcus aureus, dan Escherechia coli (Yanti, 2014).

KESIMPULAN

Dari hasil penelitin dapat disimpulkan bahwa ekstrak dari makroalga *Caulerpa*

racemosa dapat menghambat pertumbuhan kedua bakteri uji, dengan aktivitas tertinggi didapatkan dari ekstrak methanol. Hasil berbeda didapatkan pada aktivitas bakteri endofit yang hanya mampu menghambat pertumbuhan *Staphylococcus aureus* tetapi tidak mampu menghambat pertumbuhan MRSA selama masa inkubasi 3X24 jam.

DAFTAR PUSTAKA

- Ahn, J., Grun, I. U., Mustapha, A. 2004, Antimicrobial and antioxidant activities of natural extracts in vitro and in ground beef. Journal of Food Protection. Vol 67: 148-155.
- Chellaram C., Raja P., Alex John A., Krithika S. (2013). Antagonistic effect of epiphytic bacteria from marine algae, southeastern india. Pak. J. Biol. Sci. 16, 431–434.
- Lee J Y, Lee S H, Kim S H, Lee S J, Kim B C, Lee H S, Jeong H, Lee D W. 2012. Draft Genome Sequence of Bacillus endophyticus 2102. J. Bacteriol. Vol 194:20.
- Mycek, M. J. Farmakologi; Ulasan Bergambar Edisi 2. Widya Medika. Jakarta. Antimicrobial and Cytotoxic Activity of Five Algae Sps. Hasanuddin

- University. 2001 Nontji, A., *Laut Nusantara*. Djambatan. Jakarta. 2002.
- Luning.,1990. Seaweeds, Their Environment, Biogeography And Ecophysiology. John Wiley and Sons. New York.
- Prihatiningtias, W., 2005. Senyawa bioaktif Fungi Endofit Akar kuning (Fibraurea chloroleuca Miers) sebagai senyawa antimikroba. Tesis. Sekolah Pascasarjana UGM
- Putra, S.E., Alga Laut Sebagai Bio-target Industri, Situs Web Kimia Indonesia. 2006.
- Reapina M, Elsadora. 2007. Kajian Activitas Antimikroba Ekstak Kulit Kayu Mesoyi (Cryptocaria massoia) Terhadap Bakteri Patogen Dan Pembusukan Pangan . IPB Bogor.
- Tan R X, Zou W X. 2001. Endophytes: a rich source of functional metabolites. *Nat. Prod. Rep.* Vol. 18, 448–459.
- Wattimena, J.R.1991. *Farmakodinamik dan terapi antibiotik*. Gajah mada University Press. Yogyakarta.
- Yanti LS. 2014. Aktivitas senyawa antimikroba bacillus sp. terhadap biofilm bakteri patogen oportunis asal tambak udang intensif. Skripsi. Univesitas Sumatera Utara.