Analisis Ukuran Butiran Pasir Menggunakan Teknik Pengolahan Citra Digital Metode Biner
Abstract
To determine a particle size, various methods are commonly used, including sieve analysis, laser diffraction sedimentation (LAS), electronical zone sensing (EZS), image analysis or microscopy, chromatography methods, and others. In some techniques, complex processes are typically required and analysis can be time-consuming. One method that simplifies particle size analysis, especially in the micro-size range, is by utilizing digital images. One of the methods in digital imaging is the binary method. Measurements using ImageJ software were conducted with two samples, namely beach sand and concrete sand, which have different particle sizes. Based on the research results, it was obtained that were in accordance with standard measurements based on references. For beach sand with a dataset of 57 samples, the range of particle size values obtained was 0.00220 – 0.766 mm, while for concrete sand with 56 data points, the minimum value obtained was 0.315, and the maximum value was 3.30.
Downloads
References
Arena, E. T., Rueden, C. T., Hiner, M. C., Wang, S., Yuan, M., & Eliceiri, K. W. (2017). Quantitating the cell: Turning images into numbers with ImageJ. WIREs Developmental Biology, 6(2), e260. https://doi.org/10.1002/wdev.260
Capes, C. E. (2013). Particle Size Enlargement. Elsevier.
Cervantes, E., Martín, J. J., & Saadaoui, E. (2016). Updated Methods for Seed Shape Analysis. Scientifica, 2016, 5691825. https://doi.org/10.1155/2016/5691825
De Simone, V., Caccavo, D., Lamberti, G., d’Amore, M., & Barba, A. A. (2018). Wet-granulation process: Phenomenological analysis and process parameters optimization. Powder Technology, 340, 411–419. https://doi.org/10.1016/j.powtec.2018.09.053
Fulawka, L., & Halon, A. (2016). Proliferation Index Evaluation in Breast Cancer Using ImageJ and ImmunoRatio Applications. ANTICANCER RESEARCH.
Grishagin, I. V. (2015). Automatic cell counting with ImageJ. Analytical Biochemistry, 473, 63–65. https://doi.org/10.1016/j.ab.2014.12.007
Kodoatie, R. J. (2021). Tata Ruang Air Tanah. Penerbit Andi.
Kudo, Y., Yasuda, M., & Matsusaka, S. (2020). Effect of particle size distribution on flowability of granulated lactose. Advanced Powder Technology, 31(1), 121–127. https://doi.org/10.1016/j.apt.2019.10.004
Kurniawan, C., Waluyo, T., & Sebayang, P. (2011, January 1). Particle Size Analysis Using Free-Software ImageJ.
Maiti, A., Chakravarty, D., Biswas, K., & Halder, A. (2017). Development of a mass model in estimating weight-wise particle size distribution using digital image processing. International Journal of Mining Science and Technology, 27(3), 435–443. https://doi.org/10.1016/j.ijmst.2017.03.015
Oktaviani, I. (2019). Klasifikasi Jenis Batuan Pasir Sedimen Melalui Pengolahan Citra Digital Menggunakan Metode Local Binary Pattern (Lbp) dan Support Vector Machine (SVM). Universitas Telkom, S1 Teknik Telekomunikasi.
Putra, S. A. (2021). Pengaruh Ukuran Butiran Pasir terhadap Kuat Tekan Bata Ringan. Repository Polman Babel. Diakses dari: https://repository.polman-babel.ac.id/id/eprint/900/
Rahman, M., Hossain, M., & Karim, M. (2021). Image-based particle size analysis for granular materials using binary segmentation. Journal of Engineering Research, 45(2), 89-103.
Sagala, C. C. (2021). Pengaruh Ukuran Partikel Pasir Silika Sebagai Bahan Penguat Terhadap Kekerasan Dan Kekasaran Pelet Komposit [Other, Universitas Islam Riau]. https://repository.uir.ac.id/17523/
Smith, J., Brown, P., & Lee, R. (2018). Automated sand grain analysis using image processing techniques. International Journal of Material Science, 12(3), 45-60.
Surjono, S. S., Amijaya, D. H., & Winardi, S. (2022). Analisis Data Sedimen. UGM PRESS.
The influence of grain shape and size on the relationship between porosity and permeability in sandstone: A digital approach | Scientific Reports. (n.d.). Retrieved October 13, 2023, from https://www.nature.com/articles/s41598-022-11365-8
Vrekoussis, T., Chaniotis, V., Navrozoglou, I., Dousias, V., Pavlakis, K., Stathopoulos, E. N., & Zoras, O. (2009). Image Analysis of Breast Cancer Immunohistochemistry- stained Sections Using ImageJ: An RGB-based Model. ANTICANCER RESEARCH.
Wiegel, D., Eckardt, G., Priese, F., & Wolf, B. (2016). In-line particle size measurement and agglomeration detection of pellet fluidized bed coating by Spatial Filter Velocimetry. Powder Technology, 301, 261–267. https://doi.org/10.1016/j.powtec.2016.06.009
Yang, J., Yu, W., Fang, H., Huang, X., & Chen, S. (2018). Detection of size of manufactured sand particles based on digital image processing. PLOS ONE, 13(12), e0206135. https://doi.org/10.1371/journal.pone.0206135