ANALISIS ENTITY MATCHING PADA DATASET SMARTPHONE MENGGUNAKAN METODE SIF, RNN, ATTENTION, DAN HYBRID
Abstract
Penerapan teknologi informasi saat ini berdampak pada kecepatan dan efektivitas suatu perusahaan atau masyarakat. Perkembangan dan kecepatan data saat ini sangat krusial, perusahaan terus berupaya untuk mempercepat analisis data perusahaan mereka. Dalam pelaksanaan pengolahan data, entity matching berperan mencocokkan dua entitas. Masalah dengan entity matching adalah bahwa kecocokan dalam pengenal unik terdistribusi jarang terjadi dan sering kali terkait dengan masalah privasi. Oleh karena itu diperlukan langkah untuk mencocokkan dua entitas yang sama yaitu dengan menggunakan deep learning. Deepmatcher adalah paket Python yang didasarkan pada arsitektur model Deep learning yang dianggap berfungsi baik dengan pencocokan entitas. Tujuan dari penelitian ini adalah untuk mengimplementasikan deepmatcher pada entity matching melalui pencocokan antara dua dataset smartphone dengan menggunakan model SIF, RNN, attention, dan hybrid. Hasil pengujian dengan semua model rata-rata akurat. Model attention dan hybrid cocok untuk proses pelatihan model pada dataset smartphone karena masing-masing memiliki nilai F1 terbesar yaitu 82,93.
This license allows authors to copy, redistribute, remix, transform, and build upon the Work, in any format or medium, for any purpose including commercial purpose, on a perpetual basis provided they credit the Work and the authors. Authors
must explain any changes that were made from the original and may not suggest the authors endorse the use. The resultant work must be made available under the same terms, and must include a link to the CC BY 4.0 International License.