APLIKASI INVERS MATRIKS DALAM PEMBENTUKAN PESAN RAHASIA
Abstract
One thing that can be improved its implementation inLinear Algebra is Invers Matrix. Two Matrix is invers if two square
matrix have same order, matrix A and B that fulfill the characteristic
AB=BA=I, matrix B iscalled multiplication invers from matrix A and
it is notated with A-1, just the opposite, matrix A is called
multiplication invers from B that is notated with B-1. This research
purpose is to know employing invers matrix in making secret message
by using matrix adjoin to determine invers from a matrix and
employing softwareMicrosoft Visual Basic 6.0 in making message.
The steps of employing matrix invers in making secret message are:
(1) determining transformation matrix P,(2) secret message is notated
in matrix, (3) multiplying matrix P and Q with the result PQ, (4)
matrix is changed into text message with modulus operation (5) to
know sense of the message, the receiver multiplies P-1and matrix PQ
with the result the same initial code. When the initial code is same it
means that the sense of the message is known by the receiver. The
conclusion of the research are; (1) matrix invers by using matrix
adjoin is easier than using other method because mathematics
operation in involving simple operations, in despite of carefulness is
needed. (2) employing invers matrix in making secret message is more
efficient by using softwareMicrosoft Visual Basic 6.0.
References
Adriansyah, S. 2013. Penerapan Matriks Invers Tergeneralisasi pada Sandi Hill. Universitas Negeri Makassar: Makassar
Afriyanti, D, Gustanti, D. 2008. Matematika untuk SMA Kelompok Teknologi, Kesehatan dan Pertanian. Grafindo Media Pratama: Bandung
Anonim, http://id.wikipedia.org/wiki/Operasi_modulus. [Diakses tanggal 11 Februari 2014]
Anton, H, Rorres, C. 2004. Aljabar Linear Elementer Versi Aplikasi (Edisi ke delapan -jilid 1). Erlangga: Jakarta
Asneindra, M. http://www.scribd.com/doc/186834940/ALJABAR-MATRIKS. [Diakses tanggal 25 November 2013]
Chiang, C.A, Wainwright. 2006. Dasar-dasar Matematika Ekonomi Edisi 4. Erlangga: Jakarta
Fandi Suhariyadi. 2011. Matriks Invers.
NbDbBfWme360m_7PrpCMCX3A&sig2=CZo6qkFdtoeUUOZJNztlXw&b
vm=bv.59568121,d.bmk.[Diakses tanggal 21 Januari 2014]
Indriani, G. 2007. Think Smart Matematika. Grafindo Media Pratama: Bandung
Kanginan, M.2006.Matematika.Grafindo Media Pratama:Bandung
Kurniati, E. 2010. Menentukan Invers Matriks dengan Metode Dekomposisi Adomian. Universitas Negeri Maulana Malik Ibrahim: Malang http://www.lib.uinmalang. ac.id/files/thesis/fullchapter/06510040.pdf.[ Diakses tanggal 2 Oktober 2013]
Lipschutz, S, Lipson, M. 2006. Aljabar Linear. Erlangga: Jakarta
Listya, D.T, Herawati. 2007. Matematika. Grafindo Media Pratama: Bandung
Marsigit, Himmawati, Karyati, Sugiman. 2008. Matematika. Quadra: Jakarta
Ningroem, N.T.N. 2010. Matriks. Universitas Brawijaya: Kediri
Pangestu, W.D.http://www.scribd.com/doc/110383742/Bab-I-Pengenalan-Visual- BASIC. [Diaksestanggal 29 November 2013]
Riwayati, E.H, Markonah.2008. Matematika Ekonomi Bisnis. PT Grasindo:Jakarta
Setiadji. 2008. Aljabar Linear. Grahailmu: Yogyakarta
Sriyanto, Supatmon, C.2008. Siap Menghadapi Ujian Nasional SMA/MA 2009. Grasindo: Jakarta
Sutojo, T, Bowo, Erna, Astuti, S, Rahayu, Y & Mulyanto, E. 2010. Teori dan Aplikasi Aljabar Linier & Matriks dengan Implementasi Aljabar Linier & Matriks Menggunakan Matlab. CV Andi offset: Yogyakarta
Tung, Y.K. 2008. Kumpulan Rumus Lengkap Matematika. PT Grasindo: Jakarta
This license allows authors to copy, redistribute, remix, transform, and build upon the Work, in any format or medium, for any purpose including commercial purpose, on a perpetual basis provided they credit the Work and the authors. Authors
must explain any changes that were made from the original and may not suggest the authors endorse the use. The resultant work must be made available under the same terms, and must include a link to the CC BY 4.0 International License.