APLIKASI INVERS MATRIKS DALAM PEMBENTUKAN PESAN RAHASIA

  • Syafruddin Side
    (ID)
  • Syahrana Syahrana
    (ID)

Abstract

One thing that can be improved its implementation in
Linear Algebra is Invers Matrix. Two Matrix is invers if two square
matrix have same order, matrix A and B that fulfill the characteristic
AB=BA=I, matrix B iscalled multiplication invers from matrix A and
it is notated with A-1, just the opposite, matrix A is called
multiplication invers from B that is notated with B-1. This research
purpose is to know employing invers matrix in making secret message
by using matrix adjoin to determine invers from a matrix and
employing softwareMicrosoft Visual Basic 6.0 in making message.
The steps of employing matrix invers in making secret message are:
(1) determining transformation matrix P,(2) secret message is notated
in matrix, (3) multiplying matrix P and Q with the result PQ, (4)
matrix is changed into text message with modulus operation (5) to
know sense of the message, the receiver multiplies P-1and matrix PQ
with the result the same initial code. When the initial code is same it
means that the sense of the message is known by the receiver. The
conclusion of the research are; (1) matrix invers by using matrix
adjoin is easier than using other method because mathematics
operation in involving simple operations, in despite of carefulness is
needed. (2) employing invers matrix in making secret message is more
efficient by using softwareMicrosoft Visual Basic 6.0.

References

Adriansyah, S. 2013. Penerapan Matriks Invers Tergeneralisasi pada Sandi Hill. Universitas Negeri Makassar: Makassar

Afriyanti, D, Gustanti, D. 2008. Matematika untuk SMA Kelompok Teknologi, Kesehatan dan Pertanian. Grafindo Media Pratama: Bandung

Anonim, http://id.wikipedia.org/wiki/Operasi_modulus. [Diakses tanggal 11 Februari 2014]

Anton, H, Rorres, C. 2004. Aljabar Linear Elementer Versi Aplikasi (Edisi ke delapan -jilid 1). Erlangga: Jakarta

Asneindra, M. http://www.scribd.com/doc/186834940/ALJABAR-MATRIKS. [Diakses tanggal 25 November 2013]

Chiang, C.A, Wainwright. 2006. Dasar-dasar Matematika Ekonomi Edisi 4. Erlangga: Jakarta

Fandi Suhariyadi. 2011. Matriks Invers.

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&ved=0CEIQFjAD&url=http%3A%2F%2Fandisuhariyadi.dosen.narotama.ac.id%2Ffiles%2F2011%2F09%2FPERTEMUAN-8-9-bab5-matriks_invers.pdf&ei=_c_dUtS8JonLrQfm4oDAAw&usg=AFQjCNHA9y

NbDbBfWme360m_7PrpCMCX3A&sig2=CZo6qkFdtoeUUOZJNztlXw&b

vm=bv.59568121,d.bmk.[Diakses tanggal 21 Januari 2014]

Indriani, G. 2007. Think Smart Matematika. Grafindo Media Pratama: Bandung

Kanginan, M.2006.Matematika.Grafindo Media Pratama:Bandung

Kurniati, E. 2010. Menentukan Invers Matriks dengan Metode Dekomposisi Adomian. Universitas Negeri Maulana Malik Ibrahim: Malang http://www.lib.uinmalang. ac.id/files/thesis/fullchapter/06510040.pdf.[ Diakses tanggal 2 Oktober 2013]

Lipschutz, S, Lipson, M. 2006. Aljabar Linear. Erlangga: Jakarta

Listya, D.T, Herawati. 2007. Matematika. Grafindo Media Pratama: Bandung

Marsigit, Himmawati, Karyati, Sugiman. 2008. Matematika. Quadra: Jakarta

Ningroem, N.T.N. 2010. Matriks. Universitas Brawijaya: Kediri

Pangestu, W.D.http://www.scribd.com/doc/110383742/Bab-I-Pengenalan-Visual- BASIC. [Diaksestanggal 29 November 2013]

Riwayati, E.H, Markonah.2008. Matematika Ekonomi Bisnis. PT Grasindo:Jakarta

Setiadji. 2008. Aljabar Linear. Grahailmu: Yogyakarta

Sriyanto, Supatmon, C.2008. Siap Menghadapi Ujian Nasional SMA/MA 2009. Grasindo: Jakarta

Sutojo, T, Bowo, Erna, Astuti, S, Rahayu, Y & Mulyanto, E. 2010. Teori dan Aplikasi Aljabar Linier & Matriks dengan Implementasi Aljabar Linier & Matriks Menggunakan Matlab. CV Andi offset: Yogyakarta

Tung, Y.K. 2008. Kumpulan Rumus Lengkap Matematika. PT Grasindo: Jakarta

Published
2015-01-11
Section
Vol. 9 Nomor 1 Tahun 2015
Abstract viewed = 1642 times