Is There A Way to Prevent Aging? A Study Using Metformin in Blood Sugar Levels and Serum Levels of IGF-1
Abstract
Aging is influenced by lifestyle, which one is by consuming excessive calories. In recent years there have been many studies on aging and age-related diseases, calorie restriction mimetic is one of them. Metformin is a calorie restriction mimetic that is attractive to gerontologists. This research analyzed the effect of metformin as a calorie restriction mimetic on fasting blood glucose and IGF-1 serum levels in old white male Wistar rats. This study conducted with an experimental study with a pre and post-test pattern with controlled group design on male rats (Rattus novergicus) Wistar strain which was divided into 3 groups, control group (K), the calorie restriction group (P1), and the metformin group (P2), 6 rats each group. Blood glucose levels were measured by a glucometer and serum IGF-1 levels were measured with an ELISA kit, where blood samples were taken from the tail of the rats. In general, the provision of metformin and calorie restriction tended to reduce blood glucose levels, but increased serum IGF-1 levels. There is a significant relationship between blood glucose levels and serum IGF-1 levels. It’s necessary to conduct further research to determine the effective dose and maximum dose of metformin to reduce blood glucose level and serum IG-1 levels which can be slow down the aging process.
Downloads
References
Adams, P. D., Jasper, H., & Rudolph, K. L. (2015). Aging-induced stem cell mutations as drivers for disease and cancer. Cell stem cell, 16(6), 601-612. https://doi.org/10.1016/j.stem.2015.05.002
Al-Goblan, A. S., Al-Alfi, M. A., & Khan, M. Z. (2014). Mechanism linking diabetes mellitus and obesity. Diabetes, metabolic syndrome and obesity: targets and therapy, 7, 587. https://dx.doi.org/10.2147%2FDMSO.S67400
Anderson, R. M., & Weindruch, R. (2012). The caloric restriction paradigm: implications for healthy human aging. American Journal of Human Biology, 24(2), 101-106. https://doi.org/10.1002/ajhb.22243
Arai, Y., Kamide, K., & Hirose, N. (2019). Adipokines and aging: findings from centenarians and the very old. Frontiers in endocrinology, 10, 142. https://doi.org/10.3389/fendo.2019.00142
Balasubramanian, P., Howell, P. R., & Anderson, R. M. (2017). Aging and caloric restriction research: a biological perspective with translational potential. EBioMedicine, 21, 37-44. https://doi.org/10.1016/j.ebiom.2017.06.015
Barzilai, N., Crandall, J. P., Kritchevsky, S. B., & Espeland, M. A. (2016). Metformin as a tool to target aging. Cell metabolism, 23(6), 1060-1065. https://doi.org/10.1016/j.cmet.2016.05.011
Berryman, D. E., Christiansen, J. S., Johannsson, G., Thorner, M. O., & Kopchick, J. J. (2008). Role of the GH/IGF-1 axis in lifespan and healthspan: lessons from animal models. Growth Hormone & IGF Research, 18(6), 455-471. https://doi.org/10.1016/j.ghir.2008.05.005
Berryman, D. E., Christiansen, J. S., Johannsson, G., Thorner, M. O., & Kopchick, J. J. (2008). Role of the GH/IGF-1 axis in lifespan and healthspan: lessons from animal models. Growth Hormone & IGF Research, 18(6), 455-471. https://doi.org/10.1016/j.ghir.2008.05.005
Blokh, D., & Stambler, D. A. (2012). The intersection between aging and cardiovascular disease. Circulation research, 110(8), 1097-1108.
Blokh, D., & Stambler, I. (2015). Information theoretical analysis of aging as a risk factor for heart disease. Aging and disease, 6(3), 196.
Burch, J. B., Augustine, A. D., Frieden, L. A., Hadley, E., Howcroft, T. K., Johnson, R., & Wise, B. C. (2014). Advances in geroscience: impact on healthspan and chronic disease. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 69(Suppl_1), S1-S3. https://doi.org/10.1093/gerona/glu041
Čepelak, I., Dodig, S., & Dodig, D. C. (2019). Aging, Calorie Restriction and Calorie Restriction Mimetics. Rad Hrvatske akademije znanosti i umjetnosti. Medicinske znanosti, (540= 48-49), 41-50. https://doi.org/10.21857/9e31lhnddm
Cerf, M. E. (2013). Beta cell dysfunction and insulin resistance. Frontiers in endocrinology, 4, 37. https://doi.org/10.3389/fendo.2013.00037
Gillespie, Z. E., Pickering, J., & Eskiw, C. H. (2016). Better living through chemistry: caloric restriction (CR) and CR mimetics alter genome function to promote increased health and lifespan. Frontiers in Genetics, 7, 142. https://doi.org/10.3389/fgene.2016.00142
Graham, N. A., Tahmasian, M., Kohli, B., Komisopoulou, E., Zhu, M., Vivanco, I., & Graeber, T. G. (2012). Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death. Molecular systems biology, 8(1), 589. https://doi.org/10.1038/msb.2012.20
Guerville, F., Barreto, P. D. S., Ader, I., Andrieu, S., Casteilla, L., Dray, C., & Vellas, B. (2020). Revisiting the hallmarks of aging to identify markers of biological age. The Journal of prevention of Alzheimer's disease, 7(1), 56-64. https://doi.org/10.14283/jpad.2019.50
Harianja, E., Widijanti, A., Arsana, P. M., & Handono, K. (2018). Pengaruh Restriksi Kalori Terhadap Kadar Hidrogen Peroksida Dan Kadar Glukosa Darah Pada Tikus Tua. Indonesian Journal Of Clinical Pathology And Medical Laboratory, 14(1), 24-27. http://dx.doi.org/10.24293/ijcpml.v14i1.921
Johnson, M. (2012). Laboratory mice and rats. Labome. http://dx.doi.org/10.13070/mm.en.2.113
Lee, P. G., & Halter, J. B. (2017). The pathophysiology of hyperglycemia in older adults: clinical considerations. Diabetes Care, 40(4), 444-452. https://doi.org/10.2337/dc16-1732
Lee, S. H., & Min, K. J. (2013). Caloric restriction and its mimetics. BMB reports, 46(4), 181. https://dx.doi.org/10.5483%2FBMBRep.2013.46.4.033
Li P., Sun X., Cai G., & Chen X. (2017). Insulin-like Growth Factor System and Aging. Journal of Aging Science. 5(1). 1-5. https://doi.org/10.4172/2329-8847.1000171
Longo, V. D., Antebi, A., Bartke, A., Barzilai, N., Brown‐Borg, H. M., Caruso, C., & Fontana, L. (2015). Interventions to slow aging in humans: are we ready?. Aging cell, 14(4), 497-510. https://doi.org/10.1111/acel.12338
López‐Lluch, G., & Navas, P. (2016). Calorie restriction as an intervention in ageing. The Journal of physiology, 594(8), 2043-2060. https://doi.org/10.1113/JP270543
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194-1217. https://doi.org/10.1016/j.cell.2013.05.039
Madeo, F., Carmona-Gutierrez, D., Hofer, S. J., & Kroemer, G. (2019). Caloric restriction mimetics against age-associated disease: targets, mechanisms, and therapeutic potential. Cell metabolism, 29(3), 592-610. https://doi.org/10.1016/j.cmet.2019.01.018
Madiraju, A. K., Qiu, Y., Perry, R. J., Rahimi, Y., Zhang, X. M., Zhang, D., & Shulman, G. I. (2018). Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo. Nature medicine, 24(9), 1384-1394. https://doi.org/10.1038/s41591-018-0125-4
Mustika, A., Indrawati, R., & Sari, G. M. (2017). Efek Ekstrak Daun Singawalang (Petiveria alliacea) dalam Menurunkan Kadar Glukosa Darah melalui Peningkatan Ekspresi AMPK-α1 pada Tikus Model Diabetes Melitus. Jurnal Farmasi Klinik Indonesia, 6(1), 22-31. https://doi.org/10.15416/ijcp.2017.6.1.22
Nangoy, B. N., de Queljoe, E., & Yudistira, A. (2019). Uji Aktivitas Antidiabetes Dari Ekstrak Daun Sesewanua (Clerodendron squamatum Vahl.) Terhadap Tikus Putih Jantan Galur Wistar (Rattus norvegicus L.). Pharmacon, 8(4), 774-780. https://doi.org/10.35799/pha.8.2019.29353
Niccoli, T., & Partridge, L. (2012). Ageing as a risk factor for disease. Current biology, 22(17), R741-R752. https://doi.org/10.1016/j.cub.2012.07.024
Pan, H., & Finkel, T. (2017). Key proteins and pathways that regulate lifespan. Journal of Biological Chemistry, 292(16), 6452-6460. https://doi.org/10.1074/jbc.R116.771915
Paolisso, G., Barbieri, M., Bonafe, M., & Franceschi, C. (2000). Metabolic age modelling: the lesson from centenarians. European journal of clinical investigation, 30(10), 888-894. https://doi.org/10.1046/j.1365-2362.2000.00729.x
Phillipson, O. T. (2014). Management of the aging risk factor for Parkinson's disease. Neurobiology of aging, 35(4), 847-857.
Podhorecka, M., Ibanez, B., & Dmoszyńska, A. (2017). Metformin-its potential anti-cancer and anti-aging effects. Advances in Hygiene & Experimental Medicine/Postepy Higieny i Medycyny Doswiadczalnej, 71. https://doi.org/10.4161/cc.26928
Smith Jr, D. L., Elam Jr, C. F., Mattison, J. A., Lane, M. A., Roth, G. S., Ingram, D. K., & Allison, D. B. (2010). Metformin supplementation and life span in Fischer-344 rats. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 65(5), 468-474. https://doi.org/10.1093/gerona/glq033
Solon-Biet, S. M., Mitchell, S. J., de Cabo, R., Raubenheimer, D., Le Couteur, D. G., & Simpson, S. J. (2015). Macronutrients and caloric intake in health and longevity. The Journal of endocrinology, 226(1), R17. https://dx.doi.org/10.1530%2FJOE-15-0173
Sonntag, W. E., Lynch, C. D., Cefalu, W. T., Ingram, R. L., Bennett, S. A., Thornton, P. L., & Khan, A. S. (1999). Pleiotropic effects of growth hormone and insulin-like growth factor (IGF)-1 on biological aging: inferences from moderate caloric-restricted animals. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 54(12), B521-B538. https://doi.org/10.1093/gerona/54.12.B521
Stekovic, S., Hofer, S. J., Tripolt, N., Aon, M. A., Royer, P., Pein, L., & Madeo, F. (2019). Alternate day fasting improves physiological and molecular markers of aging in healthy, non-obese humans. Cell metabolism, 30(3), 462-476. https://doi.org/10.1016/j.cmet.2019.07.016
Vitale, G., Salvioli, S., & Franceschi, C. (2013). Oxidative stress and the ageing endocrine system. Nature Reviews Endocrinology, 9(4), 228-240. https://doi.org/10.1038/nrendo.2013.29
Wati, A., Kosman, R., & Lizikri, A. (2014). Perbandingan Efektivitas Hipoglikemik Obat Metformin Paten Dan Generik Berlogo Berdasarkan Penurunan Kadar Glukosa Darah Mencit (Mus Musculus) Jantan Yang Diinduksi Aloksan. As-Syifaa Jurnal Farmasi, 6(1), 91-97. https://doi.org/10.33096/jifa.v6i1.37
Xia, S., Zhang, X., Zheng, S., Khanabdali, R., Kalionis, B., Wu, J., & Tai, X. (2016). An update on inflamm-aging: mechanisms, prevention, and treatment. Journal of immunology research, 2016. https://doi.org/10.1155/2016/8426874
Yudiarto, F. L., & Sjahrir, H. (2011). Proses Penuaan Otak–Bagaimana Kita Bisa Mencegahnya?. Neurona : 28 (2) http://www.neurona.web.id/paper-detail.do?id=762
Copyright (c) 2021 Arlina W. Gama, Arief Santoso, Ika Yustisia, Nurpudji A. Taslim, Irfan Idris, Isra Wahid
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
Authors are permitted to publish their work online in third parties as it can lead to wider dissemination of the work.