Antituberculosis Activity Test of N-p-Methylbenzyl-p-coumaramide (MBC) Against M. tuberculosis H37Rv
Abstract
An antituberculosis activity test of N-p-Methylbenzyl-p-coumaramide (MBC) against M. tuberculosis H37Rv has been carried out. The purpose of this study was to determine the antituberculosis activity of MBC against M. tuberculosis H37Rv. The study was conducted using agar diffusion method. The test solution was prepared by dissolving MBC in 20 mL Ogawa medium to a final concentration of 0.25; 0.50; 1; and 2 mg/L. PDA media that had been inoculated with M. tuberculosis H37Rv (seeded agar) were poured over the base layer on the petridish surface. Paper disks that have been immersed in the test solution were put symmetrically on the seeded agar. Furthermore, the seeds were incubated at 37 oC for 48 hours. Then the diameter of the inhibition zone was measured to the accuracy of 0.5 mm with a ruler. The results showed that MBC has biological activity as an antituberculosis. MBC can inhibit the growth of M. tuberculosis H37Rv at a concentration of 0.25; 0.50; 1; and 2 mg/L with a diameter of inhibitory zones respectively 8.9; 13.7; 18.5; and 21.3 mm. This showed that the inhibition of MBC on the growth of M. tuberculosis H37Rv increased with increasing concentration of MBC used.
Downloads
References
Alistair, K. B., Ahmed, K. B. A., Fatimah, M. A. A., Joseph, L. B., Jason, H. G., Yucheng, L., and Jonathan, D. S. 2020. Identification of Substituted Amino Acid Hydrazides as Novel Anti-Tubercular Agents Using a Scaffold Hopping Approach. Molecules, 25(10), 2387-2393. doi: 10.3390/molecules25102387.
Allix, B. C., & Arandjelovic, I. 2018. Prediction of Susceptibility to First-Line Tuberculosis Drugs by DNA Sequencing. N Eng J. Med, 37(1), 1403-1409. doi: 10.1056/NEJMoa1800474
Andrews, J. M. 2001. Determination of Minimum Inhibitory Concentrations. Journal of Antimicrobial Chemoteraphy, 48(1), 5-16.
Boshoff, H. I., Mizrahi, V., and Barry, C. E. 2016. Effects of Pyrazinamide on Fatty Acids Synthesis by Whole Mycobacterial Cells and Purified Fatty Acid Synthase I. J. Bacteriol, 184(8), 2167-2172. doi: 10.1128/jb.184.8.2167-2172.2016
Byoung, S. K., Kim, M. N., Sung, H., Koh, Y., Kim, W. S., Song, J. W., Yeon, M. O., Lee, S. D., Lee, S. W., Lee, J. S., Lim, C. M., Choi, C. M., Huh, J. W., Hong, S. B., Park, S., Shim, T. S., Chong, Y. P., and Jo, K. W. 2018. In Vitro MIC Values of Rifampicin and Ethambutol and Treatment Outcome in Mycobacterium Avium Complex Lung Disease. Antimicrob Agents Chemother, 62(10), 00491-004918. doi: 10.1128/AAC.00491-18
Dali, A., & Dali, N. 2014. Isolasi dan Identifikasi Senyawa Antibakteri dari Rumput Laut Eucheuma spinosum. Laporan Penelitian. FKIP UHO, Kendari.
Dali, N., & Dali, A. 2017. Sintesis N-p-Metilbenzil-p-Kumaramida dari Asam p-Kumarat. Al-Kimia, 5(2), 154–160. doi: 10.24252/al-kimia.v5i2.3643
David, C. P., Yoninah, S., Susan, R., Petrie, M. R., Rory, P. R., Nadim, S., Richard, H., and Charles, A. P. 2015. The Clinical Pharmacokinetics of Rifampicin and Ethambutol in HIV Infected Persons with Tuberculosis. Clin Infect Dis, 41(11), 1638-1647. doi: 10.1086/49802
David, E. G., Barbara, A. B. E., Sara, S., Jerry, M., Griffith, L., and Richard, J. W. 2015. Ethambutol Ocular Toxicity in Treatment Regimens for Mycobacterium Avium Complex Lung Disease. Am J Respir Crit Care Med, 172(2), 250-253. doi: 10.1164/rccm.200407-863OC
Dooley, K. E., Miyahara, s., and von Groote, B. F. 2020. Early Bactericidal Activity of Different Isoniazid Doses for Drug Resistant TB (INH Indsight). A Randomized Open Label Clinical Trial. Am J. Respir Crit Care Med, 64(2), 753-758. doi: 10.1164/rccm.201910-1960OC
Ellard, G. A., & Gammon, P. T. 2015. Pharmacokinetics of Isoniazid Metabolism in Man. J. Pharmacokinet Biopharm, 4(1), 83-113. doi: 10.1007/BF01086149
Firdaus, Soekamto, N. H., Umar, U., Dali, S., Makmun, dan Agustiningsih, A. 2011. Sintesis Derivate Senyawa p-Kumaramida dan Uji Bioaktivitasnya Terhadap Sel Kanker Leukimia P-388. Laporan Penelitian. FMIPA Unhas, Makassar.
Ghodousi, A., Tagliani, E., and Karunaratne, E. 2019. Isoniazid Resistance in Mycobacterium Tuberculosis is a Heterogeneous Phenotype Composed of Overlapping MIC Distributions with Different Underlying Resistance Mechanisms. J. Antimicrob Chemother, 63(2), 863-868. doi: 10.1128/AAC.00092-19
Gupta, A., Montepiedra, G., and Aaron, L. 2019. Isoniazid Preventive Therapy in HIV Infected Pregnant and Postpartum Women. N Engl J. Med, 38(1), 1333-1346. doi: 10.1056/NEJMoa1813060
Page, David S.; Soendoro, R. 1989. Prinsip-prinsip Biokimia (Edisi Kedu). Jakarta: Penerbit Erlangga.
Rastina, Mirnawati, S., dan Letje, W. 2015. Aktivitas Antibakteri Ekstrak Etanol Daun Kari (Marroya koenigilli) Terhadap Staphylococcus aureus, Escherichia coli, dan Pseudomonas sp. Jurnal Kedokteran Hewan, 9(2), 45-49. doi: 10.21157/j.ked.hewan.v9i2.2842
Rattan, A., Kalia, A., dan Ahmad, N. 1998. Multidrug Resistant Mycobacterium tuberculosis: Molecular Perspectives. Emerging Infectious Diseases, 4(2), 195-209. doi: 10.3201/eid0402.980207
Retnoningrum, D. S., dan Kembaren, R. F., 2015. Mekanisme Tingkat Molekul Resistensi Terhadap Beberapa Obat pada Mycobacterium tuberculosis. Acta Pharmaceutica Indonesia, 29(3), 92-95.
Roger, K. V., Gunar, G., Kibuule, D., Christian, H., and Rennie, T. W. 2016. Optimizing Treatment Outcome of First-line Anti-tuberculosis Drugs: The Role of Therapeutic Drug Monitoring. Eur J Clin Pharmacol, 72(8), 905-916. doi: 10.1007/s00228-016-2083-4
Schön, T., Juréen, P., and Giske, C. G. 2019. Evaluation of Wild-type MIC Distributions as a Tool for Determination of Clinical Breakpoints for Mycobacterium Tuberculosis. J. Antimicrob Chemother, 64(2), 786-792. doi: 10.1093/jac/dkp262
Tang, P. 2015. Boroc Acid Catalyzed Amide Formation from Carboxylic Acid and Amines N-Benzyl-4-Phenylbutyramide. J. Organic Syntheses. Vol. 81, 262-267. doi: 10.1002/0471264229.os081.28
Yang, H., Enimil, A., and Gillani, F. S. 2018. Evaluation of the Adequacy of the 2010 Revised World Health Organization Recommended Dosages of the First-Line Antituberculosis Drugs for Children. Pediatr Infect Dis J. 37(2), 37-43. doi: 10.1097/INF.0000000000001687
Ying, Z., Wanliang, S., and Wenhong, Z. 2018. Mechanisms of Pyrazinamide Action and Resistance. Microbiol Spectr, 2(4), 1-12. doi: 10.1128/microbiolspec. MGM2-0023-2013
Younossian, A. B., Rochat, T., Katterer, J. P., Wacker, J., and Janssens, J. P. 2015. High Hepatotoxity of Pyrazinamide and Ethambutol for Treatment of Latent Tuberculosis. Eur Respir J, 26(3), 462-464. doi: 10.1183/09031936.05.00006205
Yunting, G., Xia, Y., Guanglu, J., Xiaobo, W., Yifeng, M., Yunxu, L., and Hairong, H. 2016. Pyrazinamide Resistance Among Multidrug-Resistant Tuberculosis Clinical Isolates in a National Referral Center of China and its Correlations with pncA, rpsA, and panD Gene Mutations. Diagn Microbiol Infect Disc, 84(3), 207-2011. doi: 10.1016/j.diagmicrobio.2015.10.017.
Copyright (c) 2020 Nasriadi Dali Wela, Arniah Dali Wela
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3)Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).