Synthesis of MnO2 as Supercapacitor Electrodes Material by Green Chemistry Method Through Dehydroxylation of Tangerine Peel (Citrus reticulata) Essential Oil
Abstract
In this era, most technology requires electronic equipment. The performance of electronic equipment may be affected by energy storage components like a supercapacitor, so the development of supercapacitor electrode materials using green chemical methods needs to be pursued. Material with a good specific capacitance is MnO2. Most of the MnO2 synthesis methods are not based on green chemistry, so there is an alternative method. One of them is by utilizing the waste from tangerine peels. This study aimed to synthesize MnO2 through dehydroxylation of tangerine peel essential oil. The steps for conducting this research consisted of isolation of tangerine peel essential oil, analysis of the constituent components of tangerine peel essential oil, synthesis of MnO2 through dehydroxylation of essential oils tangerine peel, and MnO2 characterization. XRD results showed that MnO2 synthesized at pH 11 had the highest percentage of α-MnO2 (97%). This is evidenced by the presence of α-MnO2 diffractogram according to the ICSD No.20227. The SEM results showed that MnO2 had a spherical morphology with a particle diameter of 39.51 nm. α-MnO2 has a larger tunnel structure compared to β- and γ-MnO2, making the charge-discharge process easier so that α-MnO2 has the potential as a supercapacitor electrode material.
Downloads
References
Abulizi, A., Yang, G. H., Okitsu, K., & Zhu, J.-J. (2014). Synthesis of MnO2 nanoparticles from sonochemical reduction of MnO4− in water under different pH conditions. Ultrasonics Sonochemistry, 21(5), 1629–1634. https://doi.org/10.1016/j.ultsonch.2014.03.030
Anita, P. D. 2012 . Kandungan Vitamin C Buah dan Komponen Minyak Atsiri Kulit Buah Jeruk Keprok (Citrus nobilis) pada Ketinggian yang Berbeda di Lereng Gunung Lawu. Universitas Sebelas Maret.
Badriawati, A. T. 2021 . Sintesis MnO2 Sebagai Kandidat Elektroda Superkapasitor Kinerja Tinggi dengan Metode Kimia Hijau Melalui Dihidroksilasi Minyak Atsiri Kulit Jeruk Baby (Citrus sinensis).
Balakumar, V., Ryu, J. W., Kim, H., Manivannan, R., & Son, Y. A. 2020 . Ultrasonic Synthesis of α-MnO2 Nanorods: An Efficient Catalytic Conversion of Refractory Pollutant, Methylene Blue. Ultrasonics Sonochemistry, 62, 104870. https://doi.org/10.1016/j.ultsonch.2019.104870
Bhujel, R., Rai, S., Deka, U., & Swain, B. P. 2019. Electrochemical, Bonding Network and Electrical Properties of Reduced Graphene Oxide-Fe2O3 Nanocomposite for Supercapacitor Electrodes Applications. Journal of Alloys and Compounds, 792, 250–259. https://doi.org/10.1016/J.JALLCOM.2019.04.004
Chatterjee, S., Ja, A., Subramanian, A., & Subramanian, S. 2017 . Synthesis and Characterization of Manganese Dioxide Using Brassica oleracea (Cabbage). Journal of Industrial Pollution Control, 33(2), 1627–1632.
Conway, B. E. 1999 . Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. Kluwer Academic / Plenum Publishers.
Devi, P. L. 2021 . Komponen Kimia dan Aktivitas Biologi Minyak Atsiri dari Kulit Jeruk Keprok (Citrus reticulata) yang Diisolasi dengan Distilasi Uap Air dan Maserasi n-Heksana. http://repo.undiksha.ac.id/id/eprint/7140
Hashem, A. M., Abuzeid, H., Kaus, M., Indris, S., Ehrenberg, H., Mauger, A., & Julien, C. M. 2018 . Green Synthesis of Nanosized Manganese Dioxide as Positive Electrode for Lithium-Ion Batteries Using Lemon Juice and Citrus Peel. Electrochimica Acta, 262, 74–81. https://doi.org/10.1016/j.electacta.2018.01.024
Kahattha, C., & Santhaveesuk, S. 2019 . Influence of Calcination Temperature on Physical and Electrochemical Properties of MnO2 Nanoparticles Synthesized by Co-Precipitation Method. Ferroelectrics, 552(1), 121–131. https://doi.org/10.1080/00150193.2019.1653088
Katiyar, R. 2017 . Modeling and Simulation Of Mentha arvensis L. Essential Oil Extraction by Water-Steam Distillation Process. International Research Journal of Engineering and Technology(IRJET), 4(6), 2793–2798. https://irjet.net/archives/V4/i6/IRJET-V4I6693.pdf
Ko, T. H., Radhakrishnan, S., Seo, M. K., Khil, M. S., Kim, H. Y., & Kim, B. S. 2017 . A Green and Scalable Dry Synthesis of NiCo2O4/Graphene Nanohybrids for High-Performance Supercapacitor and Enzymeless Glucose Biosensor Applications. Journal of Alloys and Compounds, 696, 193–200. https://doi.org/10.1016/J.JALLCOM.2016.11.234
Kolkovskyi, P. I., Rachiy, B. I., Kolkovskyi, M. I., Ostafiychuk, B. K., Yaremiy, I. P., Kotsyubynsky, V. O., & Ilnitsky, R. V. 2020 . Synthesis and Electrochemical Properties of Mesoporous α-MnO2 for Supercapacitor Applications. Journal of Nano- and Electronic Physics, 12(3), 03030-1-03030–03034. https://doi.org/10.21272/jnep.12(3).03030
Mahmudi, Widiyastuti, Nurlilasari, P., Affandi, S., and Setyawan, H. 2018 . Manganese Dioxide Nanoparticles Synthesized by Electrochemical Method and Its Catalytic Activity Towards Oxygen Reduction Reaction. Journal of the Ceramic Society of Japan, 11(126), 906–913. https://doi.org/http://doi.org/10.2109/jcersj2.18091
Marfu’ah, S. (2014). Mekanisme Reaksi-Reaksi Organik. Universitas Negeri Malang.
Ngo, T. C. Q., Tran, T. K. N., Nguyen, V. M., & Mai, H. C. 2020 . Optimization of Green Mandarin (Citrus reticulata) Essential Oil Extraction Using Microwave-Assisted Hydrodistillation and Chemical Composition Analysis. IOP Conference Series: Materials Science and Engineering, 991(1). https://doi.org/10.1088/1757-899X/991/1/012122
Patil, A. B., & Bhanage, B. M. 2016 . Sonochemistry: A Greener Protocol for Nanoparticles Synthesis. Handbook of Nanoparticles, 143–166. https://doi.org/10.1007/978-3-319-15338-4_4
Rayner, G. & Overton, C. T. 2014 . Descriptive Inorganic Chemistry Sixth Edition. In W. H. Freeman and Company (Sixth). W. H. Freeman and Company. www.ehfreeman.com
Samal, R., Dash, B., Sarangi, C. K., Sanjay, K., Subbaiah, T., Senanayake, G., & Minakshi, M. 2017 . Influence of Synthesis Temperature on The Growth and Surface Morphology of Co3O4 Nanocubes For Supercapacitor Applications. Nanomaterials, 7(11). https://doi.org/10.3390/nano7110356
Sanchez-Botero, L., Herrera, A. P., & Hinestroza, J. P. 2017 . Oriented Growth of α-MnO2 Nanorods Using Natural Extracts from Grape Stems and Apple Peels. Nanomaterials 2017, Vol. 7, Page 117, 7(5), 117. https://doi.org/10.3390/NANO7050117
Thangappan, R., Arivanandhan, M., Dhinesh Kumar, R., & Jayavel, R. 2018 . Facile Synthesis of RuO2 Nanoparticles Anchored on Graphene Nanosheets for High Performance Composite Electrode for Supercapacitor Applications. Journal of Physics and Chemistry of Solids, 121, 339–349. https://doi.org/10.1016/j.jpcs.2018.05.049
Tiloke, C., Phulukdaree, A., & Chuturgoon, A. A. 2016 . The Chemotherapeutic Potential of Gold Nanoparticles Against Human Carcinomas: A Review. Nanoarchitectonics for Smart Delivery and Drug Targeting, 783–811. https://doi.org/10.1016/B978-0-323-47347-7.00028-8
Wang, J.-G. 2016 . Engineering Nanostructured MnO2 for High Performance Supercapacitors. In Supercapacitor Design and Applications. InTech. https://doi.org/10.5772/65008
Zhang, F., Zhang, T., Yang, X., Zhang, L., Leng, K., Huang, Y., & Chen, Y. 2013 . A High-Performance Supercapacitor-Battery Hybrid Energy Storage Device Based on Graphene-Enhanced Electrode Materials with Ultrahigh Energy Density. Energy and Environmental Science, 6(6), 1623–1632. https://doi.org/10.1039/c3ee40509e
Zhang, H., Gu, J., Jiang, Y., Wang, Y., Zhao, J., Zhang, X., & Wang, C. 2014 . Calcination Removing Soft Template Cetyl Trimethyl Ammonium Bromide and Its Effects on Capacitance Performance of Supercapacitor Electrode MnO2. Energy Conversion and Management, 86, 605–613. https://doi.org/10.1016/j.enconman.2014.06.039
Zhao, X., Hou, Y., Wang, Y., Yang, L., Zhu, L., Cao, R., & Sha, Z. 2017 . Prepared MnO2 with Different Crystal Forms as Electrode Materials for Supercapacitors: Experimental Research from Hydrothermal Crystallization Process to Electrochemical Performances. RSC Advances, 7(64), 40286–40294. https://doi.org/10.1039/c7ra06369e
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3)Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).