The Effect of Metal Impregnation Of Fe Cu And Co on Surface Area of ZSM-5 Catalyst Analyzed Using Surface Area Analyzer (AAS)

  • Andreas Sihotang Universitas Jambi
    (ID)
  • Septina Is Heriyanti Badan Riset dan Inovasi Nasional (BRIN)
    (ID)
  • Sri Djangkung Sumbogo Murti Badan Riset dan Inovasi Nasional (BRIN)
    (ID)
  • Fusia Mirda Yanti Badan Riset dan Inovasi Nasional (BRIN)
    (ID)
  • Ahmad Farizt Ichsan Universitas Jambi
    (ID)
  • Alya Adiningtyas Putri Universitas Jambi
    (ID)
  • Diah Riski Gusti Universitas Jambi
    (ID)
Keywords: ZSM-5, Impregtion, Surface Area, Total Pore Volume, Pore Diameter

Abstract

The number of watercrafts in the sea will have an impact on the amount of waste lubricant oil that is discharged into the sea, which ultimately results in pollution. The increasing level of hazardous and toxic materials (B3 waste) is concerned to have a wider impact on public health and environment quality. One of the B3 wastes that requires special handling due to its high quantities is used lubricating oil. Utilization and processing of waste lubricant oil discharged from the ship is an alternative that can be applied to reach efficient consumption of petroleum which is shrinking from year to year. Therefore, we need a processing method that can reduce the pollutants generated from the waste, one of which is the Acid Clay Treatment method. This treatment aims to determine the best conditions for reducing heave metal lead (Pb) through Acid Clay Treatment method and to assess the decrease in Pb concentration contained in used lubricating oil from ship. The adsorbent used was clay that has been activated with sulphuric acid. The processing of used lubricating oil was carried out using three variations, including adsorbent concentration, contact time, and acidity (pH). The test results of used oil lubricating oil processing were 15 gram of adsorbent concentration, 90 minutes of contact time, and pH 4. The Pb reduction efficiency obtained from Acid Clay Treatment method in the best conditions was 53.72%.

Downloads

Download data is not yet available.

References

Abdullah, M., & Khairurrijal, K. (2009). Review: Karakterisasi Nanomaterial. J. Nano Saintek, 2(1), 1–9.

Alothman, Z. A. (2012). A review: Fundamental aspects of silicate mesoporous materials. Materials, 5(12), 2874–2902. https://doi.org/10.3390/ma5122874

Aregawi, A. (2021). Relation between BET surface area and pore volume?

Beznis, N. V., Van Laak, A. N. C., Weckhuysen, B. M., & Bitter, J. H. (2011). Oxidation of methane to methanol and formaldehyde over Co-ZSM-5 molecular sieves: Tuning the reactivity and selectivity by alkaline and acid treatments of the zeolite ZSM-5 agglomerates. Microporous and Mesoporous Materials, 138(1–3), 176–183. https://doi.org/10.1016/j.micromeso.2010.09.009

Chen, L., Choong, C. K. S., Zhong, Z., Huang, L., Ang, T. P., Hong, L., & Lin, J. (2010). Carbon monoxide-free hydrogen production via low-temperature steam reforming of ethanol over iron-promoted Rh catalyst. Journal of Catalysis, 276(2), 197–200. https://doi.org/10.1016/j.jcat.2010.08.018

Cychosz, K. A., & Thommes, M. (2018). Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials. Engineering, 4(4), 559–566. https://doi.org/10.1016/j.eng.2018.06.001

Dewajani, H., Rochmadi, Purwono, S., & Budiman, A. (2016). Effect of modification ZSM-5 catalyst in upgrading quality of organic liquid product derived from catalytic cracking of Indonesian nyamplung oil (Calophyllum inophyllum). AIP Conference Proceedings, 1755(2016), 1–7. https://doi.org/10.1063/1.4958485

Krisnandi, Y. K., Yusri, S., Gotama, H. S., Octaviani, S., & Sihombing, R. (2012). Synthesis and Characterization of Hierarchical Co/ZSM-5 as Catalyst for Methane Partial Oxidation. International Journal of Environment and Bioenergy, 3(2), 121–131.

Mansouri, S., Benlounes, O., Rabia, C., Thouvenot, R., Bettahar, M. M., & Hocine, S. (2013). Partial oxidation of methane over modified Keggin-type polyoxotungstates. Journal of Molecular Catalysis A: Chemical, 379, 255–262. https://doi.org/10.1016/j.molcata.2013.08.006

Morina, M., & Sidjabat, O. (2009). Pengaruh logam Kalsium (Ca) dan Kromium (Cr) dalam Pembuatan Bio-gasoline (Setara Bensin) dengan Bahan Baku Metil Ester. Lembaran Publikasi Minyak Dan Gas Bumi, 43(2), 88–97.

Narsimhan, K., Iyoki, K., Dinh, K., & Román-Leshkov, Y. (2016). Catalytic oxidation of methane into methanol over copper-exchanged zeolites with oxygen at low temperature. ACS Central Science, 2(6), 424–429. https://doi.org/10.1021/acscentsci.6b00139

Pednekar, P. P., Godiyal, S. C., Jadhav, K. R., & Kadam, V. J. (2017). Mesoporous silica nanoparticles: A promising multifunctional drug delivery system. In Nanostructures for Cancer Therapy. Elsevier Inc. https://doi.org/10.1016/B978-0-323-46144-3.00023-4

Permana, E., Cristine, I., Murti, S. D. S., & Yanti, F. M. (2020). PREPARASI DAN KARAKTERISASI KATALIS Cu / ZnO DENGAN SUPPORT KARBON AKTIF MENGGUNAKAN AKTIVATOR H3PO4 DAN ZnCl2. Jurnal Teknologi, 13(1), 6–15.

Sarifudin, K., Lado, D. Y., Utami, F. S., & Parera, L. A. M. (2020). Sintesis Dan Karakterisasi Sifat Keasaman , Morfologi , Luas Permukaan Spesifik , Rerata Jejari Pori Dan Volume Tatal Pori Katalis K-CoMo / ZAA. Prosiding Webinar Nasional Pendidikan Dan Sains Kimia 3 Tahun 2020, i, 72–81.

Sudarlin. (2012). Prinsip dan Teknik Penggunaan Gas Sorption Analyzer (GSA). Prinsip Dan Teknik Penggunaan Gas Sorption Analyzer (GSA), November 2012, 1–9. https://doi.org/10.13140/RG.2.2.13364.07048

Wang, L., Zhang, Z., Yin, C., Shan, Z., & Xiao, F. S. (2010). Hierarchical mesoporous zeolites with controllable mesoporosity templated from cationic polymers. Microporous and Mesoporous Materials, 131(1–3), 58–67. https://doi.org/10.1016/j.micromeso.2009.12.001

Widayat, W., & Annisa, A. N. (2017). Synthesis and Characterization of ZSM-5 Catalyst at Different Temperatures. IOP Conference Series: Materials Science and Engineering, 214(1). https://doi.org/10.1088/1757-899X/214/1/012032

Published
2022-12-26
How to Cite
Sihotang, A., Is Heriyanti, S., Djangkung Sumbogo Murti, S., Mirda Yanti, F., Farizt Ichsan, A., Adiningtyas Putri, A., & Riski Gusti, D. (2022). The Effect of Metal Impregnation Of Fe Cu And Co on Surface Area of ZSM-5 Catalyst Analyzed Using Surface Area Analyzer (AAS). Al-Kimia, 10(2). https://doi.org/10.24252/al-kimia.v10i2.32912
Section
Article
Abstract viewed = 349 times