The Effect of Metal Impregnation Of Fe Cu And Co on Surface Area of ZSM-5 Catalyst Analyzed Using Surface Area Analyzer (AAS)

  • Andreas Sihotang Universitas Jambi
    (ID)
  • Septina Is Heriyanti Badan Riset dan Inovasi Nasional (BRIN)
    (ID)
  • Sri Djangkung Sumbogo Murti Badan Riset dan Inovasi Nasional (BRIN)
    (ID)
  • Fusi Mirda Yanti Badan Riset dan Inovasi Nasional (BRIN)
    (ID)
  • Ahmad Farizt Ichsan Universitas Jambi
    (ID)
  • Alya Adiningtyas Putri Universitas Jambi
    (ID)
  • Diah Riski Gusti Universitas Jambi
    (ID)
Kata Kunci: ZSM-5, Impregnation, Surface Area, Total Pore Volume, Pore Diameter

Abstrak

ZSM-5 is a heterogeneous catalyst commonly used for petroleum cracking reactions and gas conversion processes ZSM-5 has a pore size of 0.54 nm × 0.56 nm with a surface area of ​​306.178 m2/g. To improve the performance of the ZSM-5 catalyst, it is necessary to impregnate it so that the surface area of ​​the catalyst becomes smaller. One of the impregnation methods used is wet impregnation with the added metal of 2.5% wt, then characterized by using a Surface Area Analyzer (SAA). The results of the analysis showed that the surface area of ​​the ZSM-5 catalyst impregnated with Fe, Cu, and Co, was 291,853m2/g, 302,390m2/g, and 291,504m2/g, respectively. The diameter of the pores of the ZSM-5 catalyst impregnated with Fe, Cu, and Co, respectively were 3.3896nm, 3.2688nm, and 3.2790nm, and the total volume of the pores of the ZSM-5 catalyst impregnated with Fe, Cu and Co metals, respectively, are 0.24732 cc/g, 0.24712cc/g, and 0.23896 cc/g, respectively. Therefore, the addition of Fe, Cu, and Co metals on the surface of the ZSM-5 catalyst will reduce the surface area of ​​the catalyst, reduce the total pore volume and reduce the diameter of the pores of the ZSM-5 catalyst.

 

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

Referensi

Abdullah, M., & Khairurrijal, K. (2009). Review: Karakterisasi Nanomaterial. J. Nano Saintek, 2(1), 1–9.

Alothman, Z. A. (2012). A review: Fundamental aspects of silicate mesoporous materials. Materials, 5(12), 2874–2902. https://doi.org/10.3390/ma5122874

Aregawi, A. (2021). Relation between BET surface area and pore volume?

Beznis, N. V., Van Laak, A. N. C., Weckhuysen, B. M., & Bitter, J. H. (2011). Oxidation of methane to methanol and formaldehyde over Co-ZSM-5 molecular sieves: Tuning the reactivity and selectivity by alkaline and acid treatments of the zeolite ZSM-5 agglomerates. Microporous and Mesoporous Materials, 138(1–3), 176–183. https://doi.org/10.1016/j.micromeso.2010.09.009

Chen, L., Choong, C. K. S., Zhong, Z., Huang, L., Ang, T. P., Hong, L., & Lin, J. (2010). Carbon monoxide-free hydrogen production via low-temperature steam reforming of ethanol over iron-promoted Rh catalyst. Journal of Catalysis, 276(2), 197–200. https://doi.org/10.1016/j.jcat.2010.08.018

Cychosz, K. A., & Thommes, M. (2018). Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials. Engineering, 4(4), 559–566. https://doi.org/10.1016/j.eng.2018.06.001

Dewajani, H., Rochmadi, Purwono, S., & Budiman, A. (2016). Effect of modification ZSM-5 catalyst in upgrading quality of organic liquid product derived from catalytic cracking of Indonesian nyamplung oil (Calophyllum inophyllum). AIP Conference Proceedings, 1755(2016), 1–7. https://doi.org/10.1063/1.4958485

Krisnandi, Y. K., Yusri, S., Gotama, H. S., Octaviani, S., & Sihombing, R. (2012). Synthesis and Characterization of Hierarchical Co/ZSM-5 as Catalyst for Methane Partial Oxidation. International Journal of Environment and Bioenergy, 3(2), 121–131.

Mansouri, S., Benlounes, O., Rabia, C., Thouvenot, R., Bettahar, M. M., & Hocine, S. (2013). Partial oxidation of methane over modified Keggin-type polyoxotungstates. Journal of Molecular Catalysis A: Chemical, 379, 255–262. https://doi.org/10.1016/j.molcata.2013.08.006

Morina, M., & Sidjabat, O. (2009). Pengaruh logam Kalsium (Ca) dan Kromium (Cr) dalam Pembuatan Bio-gasoline (Setara Bensin) dengan Bahan Baku Metil Ester. Lembaran Publikasi Minyak Dan Gas Bumi, 43(2), 88–97.

Narsimhan, K., Iyoki, K., Dinh, K., & Román-Leshkov, Y. (2016). Catalytic oxidation of methane into methanol over copper-exchanged zeolites with oxygen at low temperature. ACS Central Science, 2(6), 424–429. https://doi.org/10.1021/acscentsci.6b00139

Pednekar, P. P., Godiyal, S. C., Jadhav, K. R., & Kadam, V. J. (2017). Mesoporous silica nanoparticles: A promising multifunctional drug delivery system. In Nanostructures for Cancer Therapy. Elsevier Inc. https://doi.org/10.1016/B978-0-323-46144-3.00023-4

Permana, E., Cristine, I., Murti, S. D. S., & Yanti, F. M. (2020). PREPARASI DAN KARAKTERISASI KATALIS Cu / ZnO DENGAN SUPPORT KARBON AKTIF MENGGUNAKAN AKTIVATOR H3PO4 DAN ZnCl2. Jurnal Teknologi, 13(1), 6–15.

Sarifudin, K., Lado, D. Y., Utami, F. S., & Parera, L. A. M. (2020). Sintesis Dan Karakterisasi Sifat Keasaman , Morfologi , Luas Permukaan Spesifik , Rerata Jejari Pori Dan Volume Tatal Pori Katalis K-CoMo / ZAA. Prosiding Webinar Nasional Pendidikan Dan Sains Kimia 3 Tahun 2020, i, 72–81.

Sudarlin. (2012). Prinsip dan Teknik Penggunaan Gas Sorption Analyzer (GSA). Prinsip Dan Teknik Penggunaan Gas Sorption Analyzer (GSA), November 2012, 1–9. https://doi.org/10.13140/RG.2.2.13364.07048

Wang, L., Zhang, Z., Yin, C., Shan, Z., & Xiao, F. S. (2010). Hierarchical mesoporous zeolites with controllable mesoporosity templated from cationic polymers. Microporous and Mesoporous Materials, 131(1–3), 58–67. https://doi.org/10.1016/j.micromeso.2009.12.001

Widayat, W., & Annisa, A. N. (2017). Synthesis and Characterization of ZSM-5 Catalyst at Different Temperatures. IOP Conference Series: Materials Science and Engineering, 214(1). https://doi.org/10.1088/1757-899X/214/1/012032

Diterbitkan
2022-12-26
Bagian
Artikel
Abstrak viewed = 535 times