The Effect of Cellulose Succinate Concentration on the Mechanical Properties of Bioplastics
Abstract
The principle of bioplastic film formation is based on hydrogen bonds between the constituent molecules of bioplastics. The addition of carboxylic groups to cellulose molecules into cellulose succinate (CS) can increase bond regularity so that it has an impact on the mechanical properties of bioplastics. The purpose of this study was to determine the effect of CS concentration on tensile strength and elongation of bioplastics. The stages of this research are the synthesis of bioplastics by mixing method and variation of CS concentration, characterization of bioplastics to determine the effect of CS concentration on the mechanical properties of bioplastics, analysis of functional groups with FTIR and bond regularity with XRD. The results obtained in this study are CS concentration affects the characteristics of bioplastics. The best bioplastic was found at 3.2% CS concentration with a tensile strength value of 10.48 MPa and elongation of 4.38%. The peaks that appear on FTIR analysis are typical groups on cellulose, namely O-H, C-H and C-O. CS bioplastics also consist of amorphous and crystalline phases.
Downloads
References
Abdullah, A. H. D., Putri, O. D., & Sugandi, W. W. (2019). Effects of Starch-Glycerol Concentration Ratio on Mechanical and Thermal Properties of Cassava Starch-Based Bioplastics. Jurnal Sains Materi Indonesia, 20(4), 162. https://doi.org/10.17146/jsmi.2019.20.4.5505
Ahmad, A., Fauziah, S., Taba, P., Sondari, D., Syarifuddin, S., & Jannah, M. (2022). The Effect of Etherification Agent on the Mechanical Properties of Sodium Carboxymethyl Cellulose-based Bioplastic and Its Application As Fruit Packaging. Egyptian Journal of Chemistry, 0(0), 0–0. https://doi.org/10.21608/ejchem.2022.82891.4075
Alashwal, B. Y., Saad Bala, M., Gupta, A., Sharma, S., & Mishra, P. (2020). Improved properties of keratin-based bioplastic film blended with microcrystalline cellulose: A comparative analysis. Journal of King Saud University - Science, 32(1), 853–857. https://doi.org/10.1016/j.jksus.2019.03.006
Araújo, C. S., Rodrigues, A. M. C., Peixoto Joele, M. R. S., Araújo, E. A. F., & Lourenço, L. F. H. (2018). Optmizing process parameters to obtain a bioplastic using proteins from fish byproducts through the response surface methodology. Food Packaging and Shelf Life, 16(January), 23–30. https://doi.org/10.1016/j.fpsl.2018.01.009
Badan Standarisasi Nasional. (2016). Kriteria ekolabel - Bagian 7: Kategori produk tas belanja plastik dan bioplastik mudah terurai (SNI 7188.7:2016). Badan Standardisasi Nasional, 4.
Bagheri, V., Ghanbarzadeh, B., Ayaseh, A., Ostadrahimi, A., Ehsani, A., Alizadeh-Sani, M., & Adun, P. A. (2019). The optimization of physico-mechanical properties of bionanocomposite films based on gluten/ carboxymethyl cellulose/ cellulose nanofiber using response surface methodology. Polymer Testing, 78(May), 105989. https://doi.org/10.1016/j.polymertesting.2019.105989
Darni, Y., Lestari, H., Lismeri, L., Utami, H., & Azwar, E. (2018). Aplikasi Mikrofibril Selulosa dari Batang Sorgum Sebagai Bahan Pengisi pada Sintesis Film Bioplastik Application of Cellulose Microfibrils from Sorghum Stem as Filler in Bioplastic Film Synthesis. Rekayasa Kimia Dan Lingkungan, 13(1), 15–23.
Gabriel, A. A., Solikhah, A. F., & Rahmawati, A. Y. (2021). Tensile Strength and Elongation Testing for Starch-Based Bioplastics using Melt Intercalation Method: A Review. Journal of Physics: Conference Series, 1858(1). https://doi.org/10.1088/1742-6596/1858/1/012028
Hayatun, A., Jannah, M., Ahmad, A., & Taba, P. (2020). Synthetic Bioplastic Film from Rice Husk Cellulose. Journal of Physics: Conference Series, 1463(1). https://doi.org/10.1088/1742-6596/1463/1/012009
Jannah, M., Ahmad, A., Hayatun, A., Taba, P., & Chadijah, S. (2019). Effect of filler and plastisizer on the mechanical properties of bioplastic cellulose from rice husk. Journal of Physics: Conference Series, 1341(3). https://doi.org/10.1088/1742-6596/1341/3/032019
Kane, S. N., Mishra, A., & Dutta, A. K. (2016). Preface: International Conference on Recent Trends in Physics (ICRTP 2016). Journal of Physics: Conference Series, 755(1). https://doi.org/10.1088/1742-6596/755/1/011001
Leszczyńska, A., Radzik, P., Szefer, E., Mičušík, M., Omastová, M., & Pielichowski, K. (2019). Surface modification of cellulose nanocrystals with succinic anhydride. Polymers, 11(5). https://doi.org/10.3390/polym11050866
Ramakrishnan, N., Sharma, S., Gupta, A., & Alashwal, B. Y. (2018). Keratin based bioplastic film from chicken feathers and its characterization. International Journal of Biological Macromolecules, 111, 352–358. https://doi.org/10.1016/j.ijbiomac.2018.01.037
Santana, R. F., Bonomo, R. C. F., Gandolfi, O. R. R., Rodrigues, L. B., Santos, L. S., dos Santos Pires, A. C., … Veloso, C. M. (2018). Characterization of starch-based bioplastics from jackfruit seed plasticized with glycerol. Journal of Food Science and Technology, 55(1), 278–286. https://doi.org/10.1007/s13197-017-2936-6
Sawit, K., Sifat, P., & Biodegradable, F. (2016). l : Jl . bb Te _ p nt as ara ca P K Te pa el a le ne aja mp po n r u n : @ no s P ( 0 ya 12 en 25 ho A e 1 ) o . c , C litia 83 om im n 21 , an Pe 76 ks gg rta 2 ph u , nia , F p B n ak . pa og C si sc or , im m a J an ili : pa aw g ( 0 ne a gu 25 n @ B 1. 13(3), 146–155.
Sharif Hossain, A. B. M., Uddin, M. M., Veettil, V. N., & Fawzi, M. (2018). Nano-cellulose based nano-coating biomaterial dataset using corn leaf biomass: An innovative biodegradable plant biomaterial. Data in Brief, 17, 162–168. https://doi.org/10.1016/j.dib.2017.12.046
Syafri, E., Kasim, A., Abral, H., Asben, A., & Sudirman, S. (2018). Pembuatan Dan Karakterisasi Komposit Bioplastik Berbasis Filler Cellulose Micro Fibers Rami. Jurnal Sains Materi Indonesia, 19(2), 66. https://doi.org/10.17146/jsmi.2018.19.2.4146
Warsiki, E., Setiawan, I., & Hoerudin, H. (2020). Sintesa Komposit Bioplastik Pati Kulit Singkong-Partikel Nanosilika Dan Karakterisasinya. Jurnal Kimia Dan Kemasan, 42(2), 37. https://doi.org/10.24817/jkk.v42i2.3535
Xavier Neves, E. M. P., Pereira, R. R., da Silva Pereira, G. V., da Silva Pereira, G. V., Vieira, L. L., & Henriques Lourenço, L. de F. (2019). Effect of polymer mixture on bioplastic development from fish waste. Boletim Do Instituto de Pesca, 45(4). https://doi.org/10.20950/1678-2305.2019.45.4.518
Yang, Z., Peng, H., Wang, W., & Liu, T. (2010). Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. Journal of Applied Polymer Science, 116(5), 2658–2667. https://doi.org/10.1002/app
Yuliatun, L., & Marfitania, T. (2022). Synthesis and Characterization of Bioplastic from Blended Chitosan. Reprokimia, X(X), 1–7.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3)Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).