The Effect of Cellulose Succinate Concentration on the Mechanical Properties of Bioplastics

  • Miftahul Jannah Universitas Negeri Manado
    (ID) https://orcid.org/0000-0002-3132-4644
  • Mustapa Universitas Negeri Manado
    (ID)
  • Aisyiah Restutiningsih Putri Utami Universitas Negeri Manado
    (ID)
  • Nada Pertiwi Papriani Universitas Cenderawasih
    (ID)

Abstract

The principle of bioplastic film formation is based on hydrogen bonds between the constituent molecules of bioplastics. The addition of carboxylic groups to cellulose molecules into cellulose succinate (CS) can increase bond regularity so that it has an impact on the mechanical properties of bioplastics. The purpose of this study was to determine the effect of CS concentration on tensile strength and elongation of bioplastics. The stages of this research are the synthesis of bioplastics by mixing method and variation of CS concentration, characterization of bioplastics to determine the effect of CS concentration on the mechanical properties of bioplastics, analysis of functional groups with FTIR and bond regularity with XRD. The results obtained in this study are CS concentration affects the characteristics of bioplastics. The best bioplastic was found at 3.2% CS concentration with a tensile strength value of 10.48 MPa and elongation of 4.38%. The peaks that appear on FTIR analysis are typical groups on cellulose, namely O-H, C-H and C-O. CS bioplastics also consist of amorphous and crystalline phases.

Downloads

Download data is not yet available.

References

Abdullah, A. H. D., Putri, O. D., & Sugandi, W. W. (2019). Effects of Starch-Glycerol Concentration Ratio on Mechanical and Thermal Properties of Cassava Starch-Based Bioplastics. Jurnal Sains Materi Indonesia, 20(4), 162. https://doi.org/10.17146/jsmi.2019.20.4.5505

Ahmad, A., Fauziah, S., Taba, P., Sondari, D., Syarifuddin, S., & Jannah, M. (2022). The Effect of Etherification Agent on the Mechanical Properties of Sodium Carboxymethyl Cellulose-based Bioplastic and Its Application As Fruit Packaging. Egyptian Journal of Chemistry, 0(0), 0–0. https://doi.org/10.21608/ejchem.2022.82891.4075

Alashwal, B. Y., Saad Bala, M., Gupta, A., Sharma, S., & Mishra, P. (2020). Improved properties of keratin-based bioplastic film blended with microcrystalline cellulose: A comparative analysis. Journal of King Saud University - Science, 32(1), 853–857. https://doi.org/10.1016/j.jksus.2019.03.006

Araújo, C. S., Rodrigues, A. M. C., Peixoto Joele, M. R. S., Araújo, E. A. F., & Lourenço, L. F. H. (2018). Optmizing process parameters to obtain a bioplastic using proteins from fish byproducts through the response surface methodology. Food Packaging and Shelf Life, 16(January), 23–30. https://doi.org/10.1016/j.fpsl.2018.01.009

Badan Standarisasi Nasional. (2016). Kriteria ekolabel - Bagian 7: Kategori produk tas belanja plastik dan bioplastik mudah terurai (SNI 7188.7:2016). Badan Standardisasi Nasional, 4.

Bagheri, V., Ghanbarzadeh, B., Ayaseh, A., Ostadrahimi, A., Ehsani, A., Alizadeh-Sani, M., & Adun, P. A. (2019). The optimization of physico-mechanical properties of bionanocomposite films based on gluten/ carboxymethyl cellulose/ cellulose nanofiber using response surface methodology. Polymer Testing, 78(May), 105989. https://doi.org/10.1016/j.polymertesting.2019.105989

Darni, Y., Lestari, H., Lismeri, L., Utami, H., & Azwar, E. (2018). Aplikasi Mikrofibril Selulosa dari Batang Sorgum Sebagai Bahan Pengisi pada Sintesis Film Bioplastik Application of Cellulose Microfibrils from Sorghum Stem as Filler in Bioplastic Film Synthesis. Rekayasa Kimia Dan Lingkungan, 13(1), 15–23.

Gabriel, A. A., Solikhah, A. F., & Rahmawati, A. Y. (2021). Tensile Strength and Elongation Testing for Starch-Based Bioplastics using Melt Intercalation Method: A Review. Journal of Physics: Conference Series, 1858(1). https://doi.org/10.1088/1742-6596/1858/1/012028

Hayatun, A., Jannah, M., Ahmad, A., & Taba, P. (2020). Synthetic Bioplastic Film from Rice Husk Cellulose. Journal of Physics: Conference Series, 1463(1). https://doi.org/10.1088/1742-6596/1463/1/012009

Jannah, M., Ahmad, A., Hayatun, A., Taba, P., & Chadijah, S. (2019). Effect of filler and plastisizer on the mechanical properties of bioplastic cellulose from rice husk. Journal of Physics: Conference Series, 1341(3). https://doi.org/10.1088/1742-6596/1341/3/032019

Kane, S. N., Mishra, A., & Dutta, A. K. (2016). Preface: International Conference on Recent Trends in Physics (ICRTP 2016). Journal of Physics: Conference Series, 755(1). https://doi.org/10.1088/1742-6596/755/1/011001

Leszczyńska, A., Radzik, P., Szefer, E., Mičušík, M., Omastová, M., & Pielichowski, K. (2019). Surface modification of cellulose nanocrystals with succinic anhydride. Polymers, 11(5). https://doi.org/10.3390/polym11050866

Ramakrishnan, N., Sharma, S., Gupta, A., & Alashwal, B. Y. (2018). Keratin based bioplastic film from chicken feathers and its characterization. International Journal of Biological Macromolecules, 111, 352–358. https://doi.org/10.1016/j.ijbiomac.2018.01.037

Santana, R. F., Bonomo, R. C. F., Gandolfi, O. R. R., Rodrigues, L. B., Santos, L. S., dos Santos Pires, A. C., … Veloso, C. M. (2018). Characterization of starch-based bioplastics from jackfruit seed plasticized with glycerol. Journal of Food Science and Technology, 55(1), 278–286. https://doi.org/10.1007/s13197-017-2936-6

Sawit, K., Sifat, P., & Biodegradable, F. (2016). l : Jl . bb Te _ p nt as ara ca P K Te pa el a le ne aja mp po n r u n : @ no s P ( 0 ya 12 en 25 ho A e 1 ) o . c , C litia 83 om im n 21 , an Pe 76 ks gg rta 2 ph u , nia , F p B n ak . pa og C si sc or , im m a J an ili : pa aw g ( 0 ne a gu 25 n @ B 1. 13(3), 146–155.

Sharif Hossain, A. B. M., Uddin, M. M., Veettil, V. N., & Fawzi, M. (2018). Nano-cellulose based nano-coating biomaterial dataset using corn leaf biomass: An innovative biodegradable plant biomaterial. Data in Brief, 17, 162–168. https://doi.org/10.1016/j.dib.2017.12.046

Syafri, E., Kasim, A., Abral, H., Asben, A., & Sudirman, S. (2018). Pembuatan Dan Karakterisasi Komposit Bioplastik Berbasis Filler Cellulose Micro Fibers Rami. Jurnal Sains Materi Indonesia, 19(2), 66. https://doi.org/10.17146/jsmi.2018.19.2.4146

Warsiki, E., Setiawan, I., & Hoerudin, H. (2020). Sintesa Komposit Bioplastik Pati Kulit Singkong-Partikel Nanosilika Dan Karakterisasinya. Jurnal Kimia Dan Kemasan, 42(2), 37. https://doi.org/10.24817/jkk.v42i2.3535

Xavier Neves, E. M. P., Pereira, R. R., da Silva Pereira, G. V., da Silva Pereira, G. V., Vieira, L. L., & Henriques Lourenço, L. de F. (2019). Effect of polymer mixture on bioplastic development from fish waste. Boletim Do Instituto de Pesca, 45(4). https://doi.org/10.20950/1678-2305.2019.45.4.518

Yang, Z., Peng, H., Wang, W., & Liu, T. (2010). Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. Journal of Applied Polymer Science, 116(5), 2658–2667. https://doi.org/10.1002/app

Yuliatun, L., & Marfitania, T. (2022). Synthesis and Characterization of Bioplastic from Blended Chitosan. Reprokimia, X(X), 1–7.

Published
2023-12-28
How to Cite
Jannah, M., Mustapa, Utami, A. R. P., & Papriani, N. P. (2023). The Effect of Cellulose Succinate Concentration on the Mechanical Properties of Bioplastics . Al-Kimia, 11(2). https://doi.org/10.24252/al-kimia.v11i2.41287
Section
Article
Abstract viewed = 196 times