Kinetics Adsorption of Fe Metal using Cellulose Acetate from Palm Fronds (Borassus Flabellifer)
Kinetika Adsorpsi Logam Fe menggunakan Selulosa Asetat dari Pelepah Lontar (Borassus Flabellifer)
Abstract
Lontar palm fronds (Borassus flabellifer), containing 5.27% cellulose, can be converted into cellulose acetate, which serves as an effective adsorbent for binding iron metal. The adsorption method optimizes the binding of the adsorbate to the adsorbent based on mass and contact time. This study aims to characterize the cellulose acetate derived from lontar palm fronds and evaluate its efficacy as an adsorbent for iron (Fe) metal. The production stages of cellulose acetate include cellulose isolation, synthesis of cellulose acetate, and testing of acetyl content, with a degree of substitution valued at 2.24. Fourier transform infrared (FTIR) spectroscopy and atomic absorption spectrophotometry (AAS) were employed to characterize the cellulose acetate. The optimal absorption capacity for Fe metal was achieved with an adsorbent mass of 0.06 g, resulting in an absorption efficiency of 66.39%. The optimal contact time was determined to be 90 minutes, with an absorption efficiency of 47.56%. The adsorption kinetics of cellulose acetate for iron (Fe) followed the Pseudo Second Order model, with R² = 0.9935 and k = 0.0096.
Downloads
References
Djuned and Fauzi Muhammad. 2014. Synthesis and Characterization of Cellulose Acetat from TCF Oil Palm Empty Fruit Bunch Pulp”. Bio Resoursces 9, no. 3: h. 4710-4721.
Gaol, M Roganda L Lumban. 2013. Pembuatan Selulosa Asetat dari α -Selulosa Tandan Kosong Kelapa Sawit. Teknik Kimia USU 2, no. 3: h. 33-39.
Ischak, Netty Ino, et al. 2021. Ekstraksi dan Karakterisasi Selulosadari Limbah Kulit Kacang Tanah (Arachys hypogaea L.) sebagai Adsorben ion Logam Besi. Chem 2, no. 1: h. 27-36.
Kan, C, et al. 2013. Adsorption of Mn from Aqueous Solution Using Fe and Mn Oxide-coated Sand. Eviromental Sciences 25, no. 7: h. 1483-1491.
Khopkar S.M. 1990.“Konsep Dasar Analitik”. Jakarta: UI Press.
Nurhayati dan Rinta Kusumawati. 2014. Sintesis Selulosa Asetat Dari Limbah Pengolahan Agar (Cellulose Acetate Synthesis from Agar Processing Waste). JPB Perikanan 9, no. 2:h. 97–107.
Novia. 2015. Pengaruh Konsentrasi Natrium Hidroksida Saat Pretreatment dan Waktu Fermentasi Terhadap Kadar Bioetanol Dari Daun Nanas. Teknik Kimia 21, no. 3: h.16-26.
Saduk, Melsiani R F and Fransisko Piri Niron. 2018. Kajian Sifat Tarik Serat Pelepah Lontar dengan Singular Fiber Tensile Testing Methode. METTEK 4, no 1, h. 8-15.
Takarano, et al. 2021. Pengaruh Massa dan Waktu Adsorben Selulosa dari Kulit Jagung terhadap Konsentrasi. Teknologi 2, no. 2: h. 117-121.
Thaiyibah. 2016. Pembuatan dan Karakterisasi Membran Selulosa Asetat-PVC dari Eceng Gondok (Eichhornia Crassipes) untuk Adsorpsi Logam Tembaga (II)” Kimia Mulawarman 14, no. 1: h. 29-35.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3)Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).