Komposit Kitosan-Zeolit : Potensi Pemanfaatannnya sebagai Adsorben CO2
Abstract
The world has paid special attention to the increasing of CO2 concentrations in the atmosphere. In climate change issue, CO2 gas as part of greenhouse gases plays an important role in controlling earth surface temperature. Several CO2 gas capture techniques have been reported. However, information on the utilization of potential natural materials as CO2 adsorbents is still small. This study aims to determine the potential of chitosan zeolite composites as CO2 adsorbents. Various literature is used to analyze the properties of zeolites, chitosan and the potential of chitosan- zeolite composites as CO2 adsorbents. The results show the possibility of utilizing zeolite-chitosan composites as CO2 adsorbents.
Downloads
References
Barrer, R. M. (1978). Zeolites and clay minerals as sorbents and molecular sieves.
Breck, D. W. (1984). Zeolite molecular sieves: structure, chemistry and use. Krieger.
Berstad, D., Anantharaman, R., & Nekså, P. (2013). Low-Temperature CO2 Capture Technologies – Applications and Potential. International Journal of Refrigeration, 36(5), 1403–1416. https://doi.org/10.1016/j.ijrefrig.2013.03.017
Chang, F. Y., Chao, K. J., Cheng, H. H., & Tan, C. S. (2009). Adsorption of CO2 onto Amine-Grafted Mesoporous Silicas. Separation and Purification Technology, 70(1), 87–95. https://doi.org/10.1016/j.seppur.2009.08.016
Chiao, C., Chen, J., Lan, C., Chen, S., & Hsu, H. (2011). Development of Carbon Dioxide Capture and Storage Technology - Taiwan Power Company Perspective. Sustain. Environ. Res., 21(1), 1–8.
Choi, S., Drese, J. H., & Jones, C. W. (2009). Adsorbent Materials for Carbon Dioxide Capture From Large Anthropogenic Point Sources. ChemSusChem. https://doi.org/10.1002/cssc.200900036
Danon, A., Stair, P. C., & Weitz, E. (2011). FTIR Study of CO2 Adsorption on Amine-Grafted SBA-15: Elucidation of Adsorbed Species. Journal of Physical Chemistry C, 115(23), 11540–11549. https://doi.org/10.1021/jp200914v
Dantas, T. L. P., Luna, F. M. T., Silva, I. J., de Azevedo, D. C. S., Grande, C. A., Rodrigues, A. E., & Moreira, R. F. P. M. (2011). Carbon Dioxide-Nitrogen Separation Through Adsorption on Activated Carbon in a Fixed Bed. Chemical Engineering Journal, 169(1–3), 11–19. https://doi.org/10.1016/j.cej.2010.08.026
Espinal, L., Poster, D. L., Wong-Ng, W., Allen, A. J., & Green, M. L. (2013). Measurement, Standards, and Data Needs for CO2 Capture Materials: A critical review. Environmental Science and Technology, 47(21), 11960–11975. https://doi.org/10.1021/es402622q
Fauth, D. J., Gray, M. L., Pennline, H. W., Krutka, H. M., Sjostrom, S., & Ault, A. M. (2012). Investigation of Porous Silica Supported Mixed-Amine Sorbents for Post-Combustion CO2capture. Energy and Fuels, 26(4), 2483–2496. https://doi.org/10.1021/ef201578a
Fujiki, J., & Yogo, K. (2014). Carbon Dioxide Adsorption Onto Polyethylenimine-Functionalized Porous Chitosan Beads. Energy and Fuels, 28(10), 6467–6474. https://doi.org/10.1021/ef500975g
Fujiki, J., & Yogo, K. (2016). The increased CO2 Adsorption Performance of Chitosan-Derived Activated Carbons with Nitrogen-Doping. Chem. Commun., 52(1), 186–189. https://doi.org/10.1039/C5CC06934C
Hauchhum, L., & Mahanta, P. (2014). Carbon Dioxide Adsorption on Zeolites and Activated Carbon by Pressure Swing Adsorption in a Fixed Bed. International Journal of Energy and Environmental Engineering, 5(4), 349–356. https://doi.org/10.1007/s40095-014-0131-3
Huang, H. Y., Yang, R. T., Chinn, D., & Munson, C. L. (2003). Amine-Grafted MCM-48 and Silica Xerogel as Superior Sorbents for Acidic Gas Removal From Natural Gas. Industrial and Engineering Chemistry Research, 42(12), 2427–2433. https://doi.org/10.1021/ie020440u
Ismawati, R., & Arryanto, Y. (2013). Komposit Kitosan-Zeolit sebagai Sistem Lepas Lambat Besi (III) (Doctoral dissertation, Universitas Gadjah Mada).
Khalil, S. H., Aroua, M. K., & Daud, W. M. A. W. (2012). Study on The Improvement of The Capacity of amine-Impregnated Commercial Activated Carbon Beds for CO2 Adsorbing. Chemical Engineering Journal, 183, 15–20. https://doi.org/10.1016/j.cej.2011.12.011
Kumar, G.. (2006). “Development and Characterization of Novel Organic Coatings Based on Biopolymer Chitosan”. Dissertation. Ohio State University.
Kumar Dutta, P., Dutta, J., & Tripathi, V. S. (2004). Chitin and Chitosan: Chemistry, Properties and Applications. Journal of Scientific & Industrial Research, 63, 20–31. https://doi.org/10.1002/chin.200727270
Kusdarto. (2008). Potensi Zeolit di Indonesia. Jurnal Zeolit Indonesia, 7(1411–6723), 2. https://doi.org/http://journals.itb.ac.id/index.php/jzi/article/download/1714/1009.
Martinou, A., Kafetzopoulos, D., & Bouriotis, V. (1995). Chitin Deacetylation by Enzymatic Means: Monitoring of Deacetylation Processes. Carbohydrate Research, 273(2), 235–242. https://doi.org/10.1016/0008-6215(95)00111-6
Mello, M. R., Phanon, D., Silveira, G. Q., Llewellyn, P. L., & Ronconi, C. M. (2011). Amine-Modified MCM-41 Mesoporous Silica for Carbon Dioxide Capture. Microporous and Mesoporous Materials, 143(1), 174–179. https://doi.org/10.1016/j.micromeso.2011.02.022
Mumpton, F. A. (1985, July). Using Zeolites in Agriculture. In Innovative Biological Technologies for Lesser Developed Countries, Washington, DC: US Congress, Office of Technology Assessment, OTA-13P-F-29.
Muzzarelli, R. A., Boudrant, J., Meyer, D., Manno, N., DeMarchis, M., & Paoletti, M. G. (2012). Current Views on Fungal Chitin/Chitosan, Human Chitinases, Food Preservation, Glucans, Pectins And Inulin: A Tribute to Henri Braconnot, Precursor of the Carbohydrate Polymers Science, on the Chitin Bicentennial. Carbohydrate Polymers, 87(2), 995-1012.
Nidhin, M., Indumathy, R., Sreeram, K. J., & Nair, B. U. (2008). Synthesis of iron Oxide Nanoparticles of Narrow Size Distribution on Polysaccharide Templates. Bulletin of Materials Science, 31(1), 93–96. https://doi.org/10.1007/s12034-008-0016-2
Ojala, M. S., Ferrer Serrano, N., Uusi-Kyyny, P., & Alopaeus, V. (2014). Comparative Study: Absorption Enthalpy of Carbon Dioxide into Aqueous Diisopropanolamine and Monoethanolamine Solutions and Densities of the Carbonated Amine Solutions. Fluid Phase Equilibria, 376, 85–95. https://doi.org/10.1016/j.fluid.2014.05.038
Oyenekan, B. A., & Rochelle, G. T. (2007). Alternative Stripper Configurations for CO2 Capture by Aqueous Amines. AIChE Journal, 53(12), 3144–3154. https://doi.org/10.1002/aic.11316
Samanta, A., Zhao, A., Shimizu, G. K. H., Sarkar, P., & Gupta, R. (2012). Post-Combustion CO2 Capture Using Solid Sorbents: A review. Industrial and Engineering Chemistry Research, 51(4), 1438–1463. https://doi.org/10.1021/ie200686q
Shahidi, F., Arachchi, J. K. V., & Jeon, Y. J. (1999). Food Applications of Chitin and Chitosans. Trends in Food Science and Technology. https://doi.org/10.1016/S0924-2244(99)00017-5
Sneddon, G., Ganin, A. Y., & Yiu, H. H. P. (2015). Sustainable CO2 Adsorbents Prepared by Coating Chitosan onto Mesoporous Silicas for Large-Scale Carbon Capture Technology. Energy Technology, 3(3), 249–258. https://doi.org/10.1002/ente.201402211
Songolzadeh, M., Soleimani, M., Takht Ravanchi, M., & Songolzadeh, R. (2014). Carbon Dioxide Separation from Flue Gases: A technological Review Emphasizing Reduction in Greenhouse Gas Emissions. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/828131
Spigarelli, B. P., & Kawatra, S. K. (2013). Opportunities and Challenges in Carbon Dioxide Capture. Journal of CO2 Utilization. https://doi.org/10.1016/j.jcou.2013.03.002
Sun, H., Lu, L., Chen, X., & Jiang, Z. (2008). Surface-Modified Zeolite-Filled Chitosan Membranes for Pervaporation Dehydration of Ethanol. Applied Surface Science, 254(17), 5367–5374. https://doi.org/10.1016/j.apsusc.2008.02.056
Vyas, R. K., Shashi, & Kumar, S. (2004). Determination of Micropore Volume and Surface Area of Zeolite Molecular Sieves by D-R and D-A Equations: A comparative study. Indian Journal of Chemical Technology, 11(5), 704–709.
Wajima, T., & Ikegami, Y. (2009). Synthesis of Zeolite X from Waste Sandstone Cake Using Alkali Fusion Method. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 73(2), 124–130. https://doi.org/10.2320/jinstmet.73.124
Walton, K. S., Abney, M. B., & LeVan, M. D. (2006). CO2 Adsorption in Y and X Zeolites Modified by Alkali Metal Cation Exchange. Microporous and Mesoporous Materials, 91(1–3), 78–84. https://doi.org/10.1016/j.micromeso.2005.11.023
Wang, W., Wang, X., Song, C., Wei, X., Ding, J., & Xiao, J. (2013). Sulfuric Acid Modified Bentonite as The Support of Tetraethylenepentamine for CO2 Capture. Energy and Fuels, 27(3), 1538–1546. https://doi.org/10.1021/ef3021816
Wu, H., Zheng, B., Zheng, X., Wang, J., Yuan, W., & Jiang, Z. (2007). Surface-Modified Y Zeolite-Filled Chitosan Membrane for Direct Methanol Fuel Cell. Journal of Power Sources, 173(2 SPEC. ISS.), 842–852. https://doi.org/10.1016/j.jpowsour.2007.08.020
Yoshida, H., Oehlenschlaeger, S., Minami, Y., & Terashima, M. (2002). Adsorption of CO2 on Composites of Strong and Weak Basic Anion Exchange Resin and Chitosan. Journal of Chemical Engineering of Japan, 35(1), 32–39. https://doi.org/10.1252/jcej.35.32
Yu, C. H., Huang, C. H., & Tan, C. S. (2012). A Review of CO2 Capture by Absorption and Adsorption. Aerosol and Air Quality Research. https://doi.org/10.4209/aaqr.2012.05.0132
Yuan, W., Wu, H., Zheng, B., Zheng, X., Jiang, Z., Hao, X., & Wang, B. (2007). Sorbitol-Plasticized Chitosan/Zeolite Hybrid Membrane for direct Methanol Fuel Cell. Journal of Power Sources, 172(2), 604-612.
Zanganeh, K. E., Shafeen, A., & Salvador, C. (2009). CO2Capture and Development of an Advanced Pilot-Scale Cryogenic Separation and Compression Unit. In Energy Procedia (Vol. 1, pp. 247–252). https://doi.org/10.1016/j.egypro.2009.01.035
Zhang, L., Yu, C., Zhao, W., Hua, Z., Chen, H., Li, L., & Shi, J. (2007). Preparation of Multi-Amine-Grafted Mesoporous Silicas and Their Application to Heavy Metal Ions Adsorption. Journal of Non-Crystalline Solids, 353(44–46), 4055–4061. https://doi.org/10.1016/j.jnoncrysol.2007.06.018
Zhao, L., Riensche, E., Menzer, R., Blum, L., & Stolten, D. (2008). A Parametric Study of CO2/N2 Gas Separation Membrane Processes for Post-Combustion Capture. Journal of Membrane Science, 325(1), 284-294.
Copyright (c) 2018 Riva Ismawati
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3)Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).