Risks and Impacts of Chromium Metals on Human and Ecosystem Health
Abstract
This article discusses the harmful effects of chromium metal on human health and the environment. This review aims to provide an in-depth understanding of its negative implications. Analysis of relevant studies provides a comprehensive picture of how Cr (VI) exposure seriously impacts human health and threatens environmental safety. This review method was conducted by identifying and selecting relevant sources through the scientific journal databases PubMed, Google Scholar, and ScienceDirect with the keywords "Cr(VI)," "health risk," "environmental impact," and "chromium metal" then selected and evaluated by considering the quality of the journal, research methodology, and findings. In terms of human health, exposure to Cr(VI) has been shown to increase the risk of death from cardiovascular disease and has significant carcinogenic potential. The impact is not limited to this; Cr(VI) exposure can also cause respiratory problems and skin irritation in industrial workers. In terms of the environment, releasing Cr(VI) into the air, water, and soil threatens living ecosystems. The impact of Cr(VI) pollution on the water and soil environment is of great concern to the quality of water resources and plant growth. In addition, releasing Cr(VI) into the air around industrial plants can also endanger the health of local communities. Therefore, this article highlights the importance of stricter monitoring of chromium-using industries and promoting safer and environmentally friendly alternatives. Implementing preventive and protective measures is essential to minimize the negative impacts of chromium metal on human health and the environment. Using safer alternatives and environmentally friendly production technologies should also be encouraged to create a sustainable and healthy environment for all living beings.
Downloads
References
Adhani, R., Husaini. (2017). Logam Berat Sekitar Manusia (Vol. 66). Lambung Mangkurat University Press.
Aslam, S., Yousafzai, A. M. (2017). Chromium toxicity in fish: A review article. J. Entomol. Zool. Stud., 5: 1483–1488. https://doi.org/10.1177/2515690X211017464
ATSDR. (2012). Toxicological Profile for Chromium. https://doi.org/10.1201/9781420061888_ch63
Berryman, E. J., Paktunc, D. (2022). Cr(VI) formation in ferrochrome-smelter dust. J. Hazard. Mater., 422: 126873. https://doi.org/10.1016/j.jhazmat.2021.126873
Chakraborty, R., Renu, K., Eladl, M. A., El-Sherbiny, M., Elsherbini, D. M. A., Mirza, A. K., Vellingiri, B., Iyer, M., Dey, A., Valsala Gopalakrishnan, A. (2022). Mechanism of chromium-induced toxicity in lungs, liver, and kidney and their ameliorative agents. Biomed. Pharmacother., 151: 113119. https://doi.org/10.1016/j.biopha.2022.113119
Deng, Y., Wang, M., Tian, T., Lin, S., Xu, P., Zhou, L., Dai, C., Hao, Q., Wu, Y., Zhai, Z., Zhu, Y., Zhuang, G., Dai, Z. (2019). The effect of hexavalent Chromium on the incidence and mortality of human cancers: A meta-analysis based on published epidemiological cohort studies. Front. Oncol., 9:. https://doi.org/10.3389/fonc.2019.00024
Edlira, S., Ariola, D., Mariola, K. (2019). Chapter 7 Inorganic Toxicity: Chromium. In Inorganic Toxicity: Environment & Human Health (Issue February, pp. 98–114). Lambert Academic Publishing.
Elshazly, M. O., Abd El-Rahman, S. S., Morgan, A. M., Ali, M. E. (2015). The remedial efficacy of spirulina platensis versus chromium-induced nephrotoxicity in male Sprague-dawley rats. PLoS One, 10: 1–16. https://doi.org/10.1371/journal.pone.0126780
Febria, F. A., Fitri, W. E., Putra, A. (2023). Bioremediasi Logam Berat; Metode Pemulihan Perairan Tercemar (M. Ihksan (ed.); Bukittingg). CV. Suluah Kato Khatulistiwa.
Febria, F. A., Zakaria, I. J., Syukriani, L., Rahayu, P., Fajri, M. A. (2016). The highest mercury resistant bacteria as a mercury remediator from gold mining soil in West Sumatera, Indonesia. Available Online Www.Jocpr.Com J. Chem. Pharm. Res., 8: 394–397. www.jocpr.com
Febria, F. A., Zulkhairiah, F., Walpajri, F., Putra, A., Syukriani, L. (2023). Biofilm-Forming Heavy Metal Resistance Bacteria From Bungus Ocean Fisheries Port (PPS) West Sumatra as a Waters Bioremediation Agent. Pakistan J. Biol. Sci., 26: 168–173. https://doi.org/10.3923/pjbs.2023.168.173
Fitri, W. E., Rahmatiqa, C., Putra, A. (2021). Bioremediasi Logam Berat Pb ( II ) Dan Cu ( II ) Pada Air Lindi Menggunakan Chlorella Vulgaris. Dalt. J. Pendidik. Kim. Dan Ilmu Kim., 4:, 58–69. https://doi.org/http://dx.doi.org/10.31602/dl.v4i1.4877
Georgaki, M. N., Charalambous, M. (2023). Toxic Chromium in water and the effects on the human body: a systematic review. J. Water Health, 21: 205–223. https://doi.org/10.2166/wh.2022.214
Georgaki, M. N., Charalambous, M., Kazakis, N., Talias, M. A., Georgakis, C., Papamitsou, T., Mytiglaki, C. (2023). Chromium in Water and Carcinogenic Human Health Risk. Environ. - MDPI, 10: 1–26. https://doi.org/10.3390/environments10020033
Goyer, R. A., Clarkson, T. W., Ag, S. (2001). Toxic Effects of Metals. In The McGraw-Hill Companies (pp. 811–867). https://doi.org/10.1136/bmj.2.4676.425
IARC. (2012). Chromium (VI) compounds. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans (Vol. 6, pp. 147–167). the International Agency for Research on Cancer.
Islam, F., Hartono, B. (2016). Exposure and kidney damage risk among electroplating workers. BKM J. Community Med. Public Heal., 32: 257–262.
Islam, M. M., Mohana, A. A., Rahman, M. A., Rahman, M., Naidu, R., Rahman, M. M. (2023). A Comprehensive Review of the Current Progress of Chromium Removal Methods from Aqueous Solution. Toxins, 11: 1–43. https://doi.org/10.3390/toxics11030252
K. AL Taee, S., H., K., Kh. Ismail, H. (2020). Review On Some Heavy Metals Toxicity On Freshwater Fishes. J. Appl. Vet. Sci., 0:, 78–86. https://doi.org/10.21608/javs.2020.100157
Kim, H., Lee, K. W., Kim, B. G. (2023). Optimal Supplemental Chromium Concentration for Alleviating Heat Stress in Broiler Chickens: A Meta-analysis. Trop. Anim. Sci. J., 46:, 347–353. https://doi.org/10.5398/tasj.2023.46.3.347
Mishra, S., Bhargava, R. N. (2016). Toxic and genotoxic effects of hexavalent Chromium in environment and its bioremediation strategies. J. Environ. Sci. Heal. Part C, 34: 1–32. https://doi.org/10.1080/10590501.2015.1096883
Park, S. Y., Liu, S., Carbajal, E. P., Wosczyna, M., Costa, M., Sun, H. (2023). Hexavalent Chromium inhibits myogenic differentiation and induces myotube atrophy. Toxicol. Appl. Pharmacol., 477: 116693. https://doi.org/10.1016/J.TAAP.2023.116693
Putra, A., Fauzia, S., Deswati, Arief, S., Zein, R. (2022). Preparation, characterization, and adsorption performance of activated rice straw as a bioadsorbent for Cr(VI) removal from aqueous solution using a batch method. Desalin. Water Treat., 264: 121–132. https://doi.org/10.5004/dwt.2022.28562
Putra, A., Fauzia, S., Deswati, D., Arief, S., Zein, R. (2024). The potential of duck egg white as a modifier for activated rice straw to enhance Cr(VI) ions adsorption in an aqueous solution. South African J. Chem. Eng., 48: 204–213. https://doi.org/10.1016/j.sajce.2024.02.002
Putra, A., Fitri, W. E. (2016). Karakterisasi Pertukaran Ion Timbal (II) dengan Kalsium pada Proses Biosorpsi Alga Hijau Cladophora fracta. J. Ipteks Terap., 10:, 103–111. https://doi.org/10.22216/jit.2016.v10i2.421
Putra, A., Fitri, W. E. (2019). Efektivitas Multi Soil Layering Dalam Mereduksi Limbah Cair Industri Kelapa. Dalt. J. Pendidik. Kim. Dan Ilmu Kim., 2:, 1–15. https://doi.org/10.31602/dl.v2i2.2394
Putra, A., Fitri, W. E. (2021). Effectivity Removal of Cadmium Toxic Metals from Leachate Using Chlorella Vulgaris Non-Living Cell. Int. Conf. Nursing, Midwifery, Med. Lab. Technol. Public Heal. Heal. Inf. Manag. (SeSICNiMPH 2021), 39: 345–349. https://doi.org/10.2991/ahsr.k.211026.069
Putra, A., Fitri, W. E., Febria, F. A. (2023). Toxicity of Lead metal to health and environment: A literature review. J. Kesehat. Med. Saintika, 14:, 158–174. https://doi.org/10.30633/jkms.v14i1.1890
Shin, D. Y., Lee, S. M., Jang, Y., Lee, J., Lee, C. M., Cho, E. M., Seo, Y. R. (2023). Adverse Human Health Effects of Chromium by Exposure Route: A Comprehensive Review Based on Toxicogenomic Approach. Int. J. Mol. Sci., 24:. https://doi.org/10.3390/ijms24043410
Sun, H., Costa, M. (2022). Chromium. Handb. Toxicol. Met. Fifth Ed., 2: 197–220. https://doi.org/10.1016/B978-0-12-822946-0.00007-6
Ukhurebor, K. E., Aigbe, U. O., Onyancha, R. B., Nwankwo, W., Osibote, O. A., Paumo, H. K., Ama, O. M., Adetunji, C. O., Siloko, I. U. (2021). Effect of hexavalent Chromium on the environment and removal techniques: A review. J. Environ. Manage., 280:, 111809. https://doi.org/10.1016/j.jenvman.2020.111809
Vaiopoulou, E., Gikas, P. (2020). Regulations for chromium emissions to the aquatic environment in Europe and elsewhere. Chemosphere, 254: 126876. https://doi.org/10.1016/j.chemosphere.2020.126876
Wang, H., Liu, J., Gui, C., Yan, Q., Wang, L., Wang, S., Li, J. (2022). Synergistic remediation of Cr(VI) contaminated soil by iron-loaded activated carbon in two-chamber microbial fuel cells. Environ. Res., 208:, 112707. https://doi.org/10.1016/J.ENVRES.2022.112707
WHO. (2020). Chromium in Drinking-Water, Background Document for Development of WHO Guidelines for Drinking-Water Quality (Vol. 3).
Xu, S., Yu, C., Wang, Q., Liao, J., Liu, C., Huang, L., Liu, Q., Wen, Z., Feng, Y. (2023). Chromium Contamination and Health Risk Assessment of Soil and Agricultural Products in a Rural Area in Southern China. Toxins, 11: 1–15. https://doi.org/10.3390/toxics11010027
Yatera, K., Morimoto, Y., Ueno, S., Noguchi, S., Kawaguchi, T., Tanaka, F., Suzuki, H., Higashi, T. (2018). Cancer risks of hexavalent Chromium in the respiratory tract. J. UOEH, 40:, 157–172. https://doi.org/10.7888/juoeh.40.157
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3)Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).