Pemodelan Homologi Komparatif Struktur 3d Protein dalam Desain dan Pengembangan Obat
Abstract
One of the strategies applied in the initial steps of drug design and discovery is by utilizing the availability of 3D protein structures. However, most of functional protein structures have not been fully obtained experimentally to date. This is due to the difficulty of procedures, the high cost and the length of time required from structural biology experiments such as X-ray crystallography. Comparative homology modeling is a computational method that is proven to be accurate in predicting the structure of 3D target proteins with a ratio of 30% similarity to the arrangement of amino acids in the structure of the template proteins. This review attempts to explain comparative homology modeling methods such as MODELLER, PHYRE2, SWISS-MODEL, its iterative steps in predicting and building 3D protein target models, its evaluation and validation of protein models as well as the examples of their application in drug design and development targeting GPCR proteins, Zika virus RNA polymerase and HIV protease. With this, comparative homology modeling can be very useful to accelerate research on drug design and development in dealing with diseases and health problems that still exist in the society.
Downloads
References
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242.
Bruno, A., Aiello, F., Costantino, G., & Radi, M. (2016). Homology Modeling, Validation and Dynamics of the G Protein-coupled Estrogen Receptor 1 (GPER-1). Molecular Informatics, 35(8–9), 333–339.
Cavasotto, C. N., & Phatak, S. S. (2009). Homology modeling in drug discovery: Current trends and applications. Drug Discovery Today, 14(13–14), 676–683.
Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Wang, X., Murray, L. W., Arendall III, W. B., Snoeyink, J., Richardson, D. C. (2010). MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D: Biological Crystallography, 66(1), 12–21.
Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science, 2(9), 1511–1519.
Cothia, C., & Lensk, A. M. (1986). The relation between the divergence of sequence and structure in proteins. EMBO, 5(4), 823–826.
Davis, A. M., Teague, S. J., & Kleywegt, G. J. (2003). Application and limitations of X-ray crystallographic data in structure-based ligand and drug design. Angewandte Chemie International Edition, 42(24), 2718–2736.
Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). [20] VERIFY3D: Assessment of protein models with three-dimensional profiles. In Macromolecular Crystallography Part B: Vol. 277. Methods in Enzymology (pp. 396–404).
Elfiky, A. A. (2016). Zika viral polymerase inhibition using anti-HCV drugs both in market and under clinical trials. Journal of Medical Virology, 88(12), 2044–2051.
Eswar, N., Webb, B., Marti‐Renom, M. A., Madhusudhan, M. S., Eramian, D., Shen, M., Pieper. U., Sali, A. (2006). Comparative Protein Structure Modeling Using Modeller. Current Protocols in Bioinformatics, 15(1), 5.6.1-5.6.30.
Fiser, A. (2017). Comparative protein structure modelling. In From Protein Structure to Function with Bioinformatics (pp. 91–134). Springer.
França, T. C. C. (2015). Homology modeling: An important tool for the drug discovery. Journal of Biomolecular Structure and Dynamics, 33(8), 1780–1793.
Ginalski, K. (2006). Comparative modeling for protein structure prediction. Current Opinion in Structural Biology, 16(2), 172–177.
Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schiöth, H. B., & Gloriam, D. E. (2017). Trends in GPCR drug discovery: New agents, targets and indications. Nature Reviews Drug Discovery, 16(12), 829-842.
Hildebrand, A., Remmert, M., Biegert, A., & Söding, J. (2009). Fast and accurate automatic structure prediction with HHpred. Proteins: Structure, Function, and Bioinformatics, 77(S9), 128–132.
Hillisch, A., & Hilgenfeld, R. (2003). The role of protein 3D-structures in the drug discovery process. In Modern Methods of Drug Discovery (pp. 157–181). Springer.
Hooft, R. W. W. (1996). Errors in protein structures. Nature, 381(6580), 272.
Jones, D. T. (1999). Protein secondary structure prediction based on positionspecific scoring matrices. J Mol Biol, 292(2), 195–202.
Kalyaanamoorthy, S., & Chen, Y.-P. P. (2011). Structure-based drug design to augment hit discovery. Drug Discovery Today, 16(17–18), 831–839.
Kelley, L. A. (2017). Fold recognition. In From Protein Structure to Function with Bioinformatics (pp. 59–90). Springer.
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845–858.
Khan, F. I., Wei, D.-Q., Gu, K.-R., Hassan, M. I., & Tabrez, S. (2016). Current updates on computer aided protein modeling and designing. International Journal of Biological Macromolecules, 85, 48–62.
Khan, S. U., Ahemad, N., Chuah, L.-H., Naidu, R., & Htar, T. T. (2019). Sequential ligand-and structure-based virtual screening approach for the identification of potential G protein-coupled estrogen receptor-1 (GPER-1) modulators. RSC Advances, 9(5), 2525–2538.
Kim, D. E., Chivian, D., & Baker, D. (2004). Protein structure prediction and analysis using the Robetta server. Nucleic Acids Research, 32(suppl_2), W526–W531.
Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291.
Lee, J., Freddolino, P. L., & Zhang, Y. (2017). Ab initio protein structure prediction. In From Protein Structure to Function with Bioinformatics (pp. 3–35). Springer.
Lobley, A., Sadowski, M. I., & Jones, D. T. (2009). pGenTHREADER and pDomTHREADER: New methods for improved protein fold recognition and superfamily discrimination. Bioinformatics, 25(14), 1761–1767.
Lounnas, V., Ritschel, T., Kelder, J., McGuire, R., Bywater, R. P., & Foloppe, N. (2013). Current progress in structure-based rational drug design marks a new mindset in drug discovery. Computational and Structural Biotechnology Journal, 5(6), e201302011.
Lybrand, T. P. (1995). Ligand—protein docking and rational drug design. Current Opinion in Structural Biology, 5(2), 224–228.
Mandal, S., Moudgil, M., & Mandal, S. K. (2009). Rational drug design. European Journal of Pharmacology, 625(1–3), 90–100.
McGinnis, S., & Madden, T. L. (2004). BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Research, 32(2), W20–W25.
Mlakar, J., Korva, M., Tul, N., Popović, M., Poljšak-Prijatelj, M., Mraz, J., Kolenc, M., Rus, KR., Vipotnik, T. V., Vodusek, V. F., Vizjak, A., Pizem, J., Petrovec, M., Zupanc, T. A.. (2016). Zika virus associated with microcephaly. New England Journal of Medicine, 374(10), 951–958.
Moult, J., & Melamud, E. (2000). From fold to function. Current Opinion in Structural Biology, 10(3), 384–389.
Murata, K., & Wolf, M. (2018). Cryo-electron microscopy for structural analysis of dynamic biological macromolecules. Biochimica et Biophysica Acta (BBA)-General Subjects, 1862(2), 324–334.
Nero, T. L., Parker, M. W., & Morton, C. J. (2018). Protein structure and computational drug discovery. Biochemical Society Transactions, 46(5), 1367–1379.
Orengo, C. A., Todd, A. E., & Thornton, J. M. (1999). From protein structure to function. Current Opinion in Structural Biology, 9(3), 374–382.
Pontius, J., Richelle, J., & Wodak, S. J. (1996). Deviations from Standard Atomic Volumes as a Quality Measure for Protein Crystal Structures. Journal of Molecular Biology, 264(1), 121–136.
Remmert, M., Biegert, A., Hauser, A., & Söding, J. (2012). HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods, 9, 173–175.
Roy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: A unified platform for automated protein structure and function prediction. Nature Protocols, 5(4), 725.
Šali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234(3), 779–815.
Saravanan, K. M., Palanivel, S., Yli-Harja, O., & Kandhavelu, M. (2018). Identification of novel GPR17-agonists by structural bioinformatics and signaling activation. International Journal of Biological Macromolecules, 106, 901–907.
Saudale, F. Z. (2020). Pemodelan Molekuler: Prediksi dan Validasi Struktur 3D Protein in silico. Literasi Nusantara. Malang
Saudale, F. Z., Lerrick, R. I., Parikesit, A. A., & Mariti, F. (2019). Chemistry Teachers’ Awareness, Understanding, and Confidence toward Computational Tools for Molecular Visualization. Jurnal Pendidikan IPA Indonesia, 8(4), 436–446.
Saudale, F. Z., & Suatu, I. R. S. (2020). Pemodelan Homologi Komparatif FABP Belalang Kembara (Locusta migratoria) dengan PHYRE2 dan Skrining Virtual Inhibitor Potensial. Indo. J. Chem. Res., 7(2), 127–140.
Schwede, T. (2013). Protein modeling: What happened to the “protein structure gap”? Structure, 21(9), 1531–1540.
Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 31(13), 3381–3385.
Shebanits, K., Vasile, S., Xu, B., Gutiérrez-de-Terán, H., & Larhammar, D. (2019). Functional characterization in vitro of twelve naturally occurring variants of the human pancreatic polypeptide receptor NPY4R. Neuropeptides. In Press
Shi, Y. (2014). A glimpse of structural biology through X-ray crystallography. Cell, 159(5), 995–1014.
Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Soding, J., Thompson, J. D., Higgins, D. G. (2011). Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7, 539.
Sippl, M. (1993). Recognition of errors in three-dimensional structures of proteins. Proteins, 17(4), 355–362.
Skolnick, J., & Fetrow, J. S. (2000). From genes to protein structure and function: Novel applications of computational approaches in the genomic era. Trends in Biotechnology, 18(1), 34–39.
Slabinski, L., Jaroszewski, L., Rodrigues, A. P., Rychlewski, L., Wilson, I. A., Lesley, S. A., & Godzik, A. (2007). The challenge of protein structure determination—lessons from structural genomics. Protein Science, 16(11), 2472–2482.
Söding, J., Biegert, A., & Lupas, A. N. (2005). The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Research, 33(suppl_2), W244–W248.
Sriram, K., & Insel, P. A. (2018). G protein-coupled receptors as targets for approved drugs: How many targets and how many drugs? Molecular Pharmacology, 93(4), 251–258.
Wang, T., Wu, M.-B., Zhang, R.-H., Chen, Z.-J., Hua, C., Lin, J.-P., & Yang, L.-R. (2016). Advances in computational structure-based drug design and application in drug discovery. Current Topics in Medicinal Chemistry, 16(9), 901–916.
Webb, B., & Sali, A. (2017). Protein structure modeling with MODELLER. In Functional Genomics (pp. 39–54). Springer.
Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(suppl_2), W407–W410.
Xiang, Z. (2006). Advances in homology protein structure modeling. Current Protein and Peptide Science, 7(3), 217–227.
Zondagh, J., Balakrishnan, V., Achilonu, I., Dirr, H. W., & Sayed, Y. (2018). Molecular dynamics and ligand docking of a hinge region variant of South African HIV-1 subtype C protease. Journal of Molecular Graphics and Modelling, 82, 1–11.
Copyright (c) 2020 Fredy Z Saudale
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3)Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).