The Potential Role of 6-gingerol and 6-shogaol as ACE Inhibitors in Silico Study

  • Yohanes Bare Nusa Nipa University
    (ID)
  • Maria Helvina Nusa Nipa University
    (ID)
  • Gabriella Chandrakirana Krisnamurti King Mongkut’s University of Technology
    (ID)
  • Mansur S NUSA NIPA UNIVERSITY
    (ID)

Abstract

Hypertension has become the third highest cause of death in Indonesia. The condition is correlated with angiotensin-converting enzyme (ACE), and possibly managed with the use of drugs. In addition, some natural compounds, including 6-shogaol and 6-gingerol from ginger, are used to decrease blood pressure. However, the mechanism and binding site of these compounds to ACE protein is currently unclear. This study, therefore, aims to investigate the potential role of these compounds as an angiotensin-converting enzyme inhibitor. The ACE protein was downloaded from Protein Data Bank (PDB) database with the ID: 3bkk, while the 6-shogaol (CID: 5281794) and 6-gingerol (CID: 44559528) ligands were obtained from the PubChem database. Meanwhile, molecular docking was established using HEX 8.0.0 software. The analysis examined the amino acid residues and the bonds formed from these interactions. According to the results, 14 amino acid residues were formed by the interaction between 6-shogaol and ACE, while the interaction between 6-gingerol and ACE formed eight amino acids. Also, 13 amino acid residues in the novelty binding site of ACE were discovered to be blocked by the ligands from ginger. Therefore, the compounds have potential roles as inhibitors, and this possibly helps to prevent regulation of the renin-angiotensin system. These interactions also formed hydrogen bonds, as well as electrostatic, unfavorable, and hydrophobic sites, making the binding stronger than others. 

Author Biographies

Yohanes Bare, Nusa Nipa University
Biology Education Program Study, Faculty of Teaching and Training
Maria Helvina, Nusa Nipa University
Primary Education Program Study, Faculty of Teaching and Training
Gabriella Chandrakirana Krisnamurti, King Mongkut’s University of Technology
Biotechnology Program, School of Bioresources and Technology
Mansur S, NUSA NIPA UNIVERSITY
Biology Education Program Study, Faculty of Teaching and Training

References

Agunloye OM, Oboh G. 2018. Caffeic acid and chlorogenic acid: evaluation of antioxidant effect and inhibition of key enzymes linked with hypertension. Journal of Food Biochemistry. vol 42(4): 1–10. doi: https://doi.org/10.1111/jfbc.12541.

Akinyemi AJ, Ademiluyi AO, Oboh G. 2013. Aqueous extracts of two varieties of ginger (Zingiber officinale) inhibit angiotensin I–converting enzyme, Iron(II), and sodium nitroprusside-induced lipid peroxidation in the rat heart in vitro. Journal of Medicinal Food. vol 16(7): 641–646. doi: https://doi.org/10.1089/jmf.2012.0022.

Akinyemi AJ, Ademiluyi AO, Oboh G. 2014. Inhibition of angiotensin-I-converting enzyme activity by two varieties of ginger (Zingiber officinale) in rats fed a high cholesterol diet. Journal of Medicinal Food. vol 17(3): 317–323. doi: https://doi.org/10.1089/jmf.2012.0264.

Al Shukor N, Van Camp J, Gonzales GB, Staljanssens D, Struijs K, Zotti MJ, Raes K, Smagghe G. 2013. Angiotensin-converting enzyme inhibitory effects by plant phenolic compounds: A study of structure activity relationships. Journal of Agricultural and Food Chemistry. vol 61(48): 11832–11839. doi: https://doi.org/10.1021/jf404641v.

Ashcroft FM, Rorsman P. 2012. Diabetes mellitus and the β cell: the last ten years. Cell. vol 148(6): 1160–1171. doi: https://doi.org/10.1016/j.cell.2012.02.010.

Bare Y, Marhendra A, Sasase T, Fatchiyah F. 2018. Differential expression of IL-10 gene and protein in target tissues of Rattus norvegicus Strain Wistar model type 2 Diabetes Mellitus (T2DM). Acta Informatica Medica. vol 26(2): 87–92. doi: https://doi.org/10.5455/aim.2018.26.87-92

Bare Y, Rophi AH, Tiring SSNND, Rachmad YT, Nugraha FAD, Sari DRT. 2019a. Prediction potential chlorogenic acid as inhibitor ACE (In silico study). Bioscience. vol 3(2): 197–203. doi: https://doi.org/10.24036/0201932105856-0-00.

Bare Y, Sari DRT, Rachmad YT, Krisnamurti GC, Elizabeth A. 2019b. In silico insight the prediction of chlorogenic acid in coffee through Cyclooxygenase-2 (COX2) Interaction. Biogenesis: Jurnal Ilmiah Biologi. vol 7(2): 100–105. doi: https://doi.org/10.24252/bio.v7i2.9847.

Bhullar KS, Lassalle-Claux G, Touaibia M, Rupasinghe HPV. 2014. Antihypertensive effect of caffeic acid and its analogs through dual renin–angiotensin–aldosterone system inhibition. European Journal of Pharmacology. vol 730: 125–132. doi: https://doi.org/10.1016/j.ejphar.2014.02.038.

Chiou SY, Sung JM, Huang PW, Lin SD. 2017. Antioxidant, antidiabetic, and antihypertensive properties of Echinacea purpurea flower extract and caffeic acid derivatives using in vitro models. Journal of Medicinal Food. vol 20(2): 171–179. doi: https://doi.org/10.1089/jmf.2016.3790.

Guang C, Phillips RD, Jiang B, Milani F. 2012. Three key proteases–angiotensin-I-converting enzyme (ACE), ACE2 and renin–within and beyond the renin-angiotensin system. Archives of Cardiovascular Diseases. vol 105(6-7): 373–385. doi: https://doi.org/10.1016/j.acvd.2012.02.010.

Hameed I, Masoodi SR, Mir SA, Nabi M, Ghazanfar K, Ganai BA. 2015. Type 2 diabetes mellitus: from a metabolic disorder to an inflammatory condition. World Journal of Diabetes. vol 6(4): 598–612. doi: https://dx.doi.org/10.4239%2Fwjd.v6.i4.598.

Huang WY, Fu L, Li CY, Xu LP, Zhang LX, Zhang WM. 2017. Quercetin, hyperin, and chlorogenic acid improve endothelial function by antioxidant, antiinflammatory, and ACE inhibitory effects. Journal of Food Science. vol 82(5): 1239–1246. doi: https://doi.org/10.1111/1750-3841.13706.

Kataria R, Khatkar A. 2019. In-silico design, synthesis, ADMET studies and biological evaluation of novel derivatives of chlorogenic acid against urease protein and H. Pylori bacterium. BMC Chemistry. vol 13(1): 1–17. doi: https://doi.org/10.1186/s13065-019-0556-0.

Kesuma D, Siswandono S, Purwanto BT, Hardjono S. 2018. Uji in silico aktivitas sitotoksik dan toksisitas senyawa Turunan N-(Benzoil)-N’- feniltiourea sebagai calon obat antikanker. JPSCR : Journal of Pharmaceutical Science and Clinical Research. vol 3(1): 1–11. doi: https://doi.org/10.20961/jpscr.v3i1.16266.

Larson AJ, Symons JD, Jalili T. 2010. Quercetin: A treatment for hypertension?—A review of efficacy and mechanisms. Pharmaceuticals. vol 3(1): 237–250. doi: https://doi.org/10.3390/ph3010237.

Liao X, Xiao J, Li SH, Xiao LL, Cheng B, Fu XB, Cui T, Liu HW. 2019. Critical role of the endogenous renin-angiotensin system in maintaining self-renewal and regeneration potential of epidermal stem cells. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. vol 1865(10): 2647–2656. doi: https://doi.org/10.1016/j.bbadis.2019.07.006.

Liu Q, Liu J, Guo H, Sun S, Wang S, Zhang Y, Li S, Qiao Y. 2013. [6]-Gingerol: A Novel AT1 antagonist for the treatment of cardiovascular disease. Planta Medica. vol 79(05): 322–326. doi: https://doi.org/10.1055/s-0032-1328262.

Liu X, Raghuvanshi R, Ceylan FD, Bolling BW. 2020. Quercetin and its metabolites inhibit recombinant human angiotensin-converting enzyme 2 (ACE2) activity. Journal of Agricultural and Food Chemistry. vol 68(47): 13982–13989. doi: https://doi.org/10.1021/acs.jafc.0c05064.

Mao QQ, Xu XY, Cao SY, Gan RY, Corke H, Beta T, Li HB. 2019. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods. vol 8(6): 1–21. doi: https://doi.org/10.3390/foods8060185.

Messerli FH, Bangalore S, Bavishi C, Rimoldi SF. 2018. Angiotensin-converting enzyme inhibitors in hypertension. Journal of the American College of Cardiology. vol 71(13): 1474–1482. doi: https://doi.org/10.1016/j.jacc.2018.01.058.

Muhammad SA, Fatima N. 2015. In silico analysis and molecular docking studies of potential angiotensin-converting enzyme inhibitor using quercetin glycosides. Pharmacognosy Magazine. vol 11(42): 123–126. doi: https://doi.org/10.4103/0973-1296.157712.

Nileeka Balasuriya BW, Vasantha Rupasinghe HP. 2011. Plant flavonoids as angiotensin converting enzyme inhibitors in regulation of hypertension. Functional Foods in Health and Disease. vol 1(5): 172–188. doi: https://doi.org/10.31989/ffhd.v1i5.132.

Ouwerkerk W, Voors AA, Anker SD, Cleland JG, Dickstein K, Filippatos G, van der Harst P, Hillege HL, Lang CC, ter Maaten JM, Ng LL, Ponikowski P, Samani NJ, van Veldhuisen DJ, Zannad F, Metra M, Zwinderman AH. 2017. Determinants and clinical outcome of uptitration of ACE-inhibitors and beta-blockers in patients with heart failure: A prospective European study. European Heart Journal. vol 38(24): 1883–1890. doi: https://doi.org/10.1093/eurheartj/ehx026.

Sahardi NFNM, Makpol S. 2019. Ginger (Zingiber officinale Roscoe) in the prevention of ageing and degenerative diseases: Review of current evidence. Evidence-Based Complementary and Alternative Medicine. vol 2019: 1–13. doi: https://doi.org/10.1155/2019/5054395.

Sanghal A, Pant KK, Natu SM, Nischal A, Khattri S, Nath R. 2012. An experimental study to evaluate the preventive effect of Zingiber officinale (ginger) on hypertension and hyperlipidaemia and its comparison with Allium sativum (garlic) in rats. Journal of Medicinal Plants Research. vol 6(25): 4231–4238. doi: https://doi.org/10.5897/JMPR12.323.

Santoso B, Atmajaya TE, Tirtodiharjo MK. 2016. Kajian docking senyawa 4-[(Z)-N-(4-hidroksifenil) carboksimidoil]-2- metoksifenol sebagai inhibitor Cox-2 menggunakan plants. Prosiding Seminar Nasional Kimia UNJANI-HKI 2016, August 2-4, 2016. Bandung: Hotel Grand Tjokro.

Shivanna N, Naika M, Khanum F, Kaul VK. 2013. Antioxidant, anti-diabetic and renal protective properties of Stevia rebaudiana. Journal of Diabetes and its Complications. vol 27(2): 103–113. doi: https://doi.org/10.1016/j.jdiacomp.2012.10.001.

Tarigan AR, Lubis Z, Syarifah S. 2018. Pengaruh pengetahuan, sikap dan dukungan keluarga terhadap diet hipertensi di Desa Hulu Kecamatan Pancur Batu tahun 2016. Jurnal Kesehatan. vol 11(1): 9–17. doi: https://doi.org/10.24252/kesehatan.v11i1.5107.

Zhao W, Chen Y, Xue S, Yu Z, Yu H, Liu J, Li J, Chen F. 2018. MALDI-TOF-MS characterization of N-linked glycoprotein derived from ginger with ACE inhibitory activity. Food & Function. vol 9(5): 2755–2761. doi: https://doi.org/10.1039/C8FO00156A.

Zhou W, Yan H, Hao Q. 2012. Analysis of surface structures of hydrogen bonding in protein–ligand interactions using the alpha shape model. Chemical Physics Letters. vol 545: 125–131. doi: https://doi.org/10.1016/j.cplett.2012.07.016.

Published
2020-12-30
Section
Research Articles
Abstract viewed = 714 times

Most read articles by the same author(s)