In Silico Insight the Prediction of Chlorogenic Acid in Coffee through Cyclooxygenase-2 (COX2) Interaction
Abstract
Inflammation was signs of pathological or abnormality in tissue to give an alert as a trouble signal to the system. Therapeutic using NSAIDs has some side effects. This research explored the potential role of chlorogenic acid as natural therapeutic compound to inhibit the inflammation target such as COX-2 by interaction model. The research method used in this study was the molecular docking approach, which binds ligand and protein. Protein data provided by Protein Data Bank (ID: 6cox) while, chlorogenic acid obtain from PubChem (CID: 1794427). We docked COX-2 and chlorogenic acid using Hex 8.0.0. Visualization and analysis of the molecular interactions of chlorogenic acid and COX-2 conducted by the Discovery Studio Client 4.1 software. Chlorogenic acid has a high permeability and is easily absorbed based on five Lipinski Rule. Interestingly, we found Fifteen amino acid was binding with chlorogenic acid that formed by hydrogen bond and van der Waals.The interaction between ligand-protein results in energy binding -327.59cal/mol. Chlorogenic acid has a potential role to inhibit inflammation pathway by inhibiting COX-2. We predicted chlorogenic acid has a potential as therapy anti-inflammatory to suppress COX-2 as mediator inflammation.
References
Abdulkhaleq LA, Assi MA, Abdullah R, Zamri-Saad M, Taufiq-Yap YH, Hezmee MNM. 2018. The crucial roles of inflammatory mediators in inflammation: a review. Vet World. vol 11: 627–635. https://doi.org/10.14202/vetworld.2018.627-635.
Al-Saeed A. 2011. Gastrointestinal and cardiovascular risk of nonsteroidalanti-inflammatory drugs. Oman Medical Journal. 26, 385–391. doi: https://doi.org/10.5001/omj.2011.101.
Bäck M, Yin L, Ingelsson E. 2012. Cyclooxygenase-2 inhibitors and cardiovascular risk in a nation-wide cohort study after the withdrawal of rofecoxib. European Heart Journal. vol 33(15): 1928–1933. https://doi.org/10.1093/eurheartj/ehr421.
Bare Y, Krisnamurti GC, Elizabeth A, Rachmad YT, Sari DRT, Lorenza MRWG. 2019a. The potential role of caffeic acid in coffee as cyclooxygenase-2 (COX-2) inhibitor: in silico study. Biointerface Research Applied Chemistry. vol 9(5): 4424–4427. doi: https://doi.org/10.33263/BRIAC95.424427.
Bare Y, Marhendra A, Sasase T, Fatchiyah F. 2018. Differential expression of IL-10 gene and protein in target tissues of Rattus norvegicus strain wistar model type 2 diabetes mellitus (T2DM). Acta Informatica Medica. vol 26(2): 87–92. doi: https://doi.org/10.5455/aim.2018.26.87-92.
Bare Y, Sari DRT, Rachmad YT, Sulistyaningsih S, Tiring ND, Rophi AH, Nugraha FAD. 2019b. Prediction potential chlorogenic acid as inhibitor ace (in silico study). Bioscience. vol 3(2): 197–203. doi: https://doi.org/10.24036/0201932105856-0-00.
Buchanan FG, Wang D, Bargiacchi F, DuBois RN. 2003. Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. Journal Biological Chemistry. vol 278(3): 35451–35457. doi: https://doi.org/10.1074/jbc.M302474200.
Farah A, Monteiro M, Donangelo CM, Lafay S. 2008. Chlorogenic acids from green coffee extract are highly bioavailable in humans. The Journal of Nutrition. vol 138(12): 2309–2315. doi: https://doi.org/10.3945/jn.108.095554.
Knights KM, Mangoni AA, Miners JO. 2010. Defining the COX inhibitor selectivity of NSAIDs: implications for understanding toxicity. Expert Revie Clinical Pharmacology. vol 3(6): 769–776. doi: https://doi.org/10.1586/ecp.10.120.
Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman RA, Pak JY, Gildehaus D, Miyashiro JM, Penning TD, Seibert K, Isakson PC, Stallings WC., 1996. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature. vol 384(6610): 644–648. doi: https://doi.org/10.1038/384644a0.
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. 1997. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews. vol 46(1-3): 3–26. doi: https://doi.org/10.1016/S0169-409X(96)00423-1.
Moon JK, Yoo HS, Shibamoto T. 2009. Role of roasting conditions in the level of chlorogenic acid content in coffee beans: correlation with coffee acidity. Journal of agricultural and food chemistry. vol 57(12): 5365–5369. doi: https://doi.org/10.1021/jf900012b.
Perez YR, Alvarez D, Combariza A. 2019. Ligand-Protein Interactions: A Hybrid ab initio/Molecular Mechanics Computational Study. Preprints. vol 1(2019): 1–24. doi: https://doi.org/10.20944/preprints201902.0124.v1.
Phalitakul S, Okada M, Hara Y, Yamawaki H. 2011. Vaspin prevents TNF-α-induced intracellular adhesion molecule-1 via inhibiting reactive oxygen species-dependent NF-κB and PKCθ activation in cultured rat vascular smooth muscle cells. Pharmacological Research. vol 64(5): 493–500. doi: https://doi.org/10.1016/j.phrs.2011.06.001.
Poligone B, and Baldwin AS. 2001. Positive and negative regulation of NF-κB by COX-2: roles of different prostaglandins. The Journal of Biological Chemistry. vol 276(42): 38658–38664. doi: https://doi.org/10.1074/jbc.M106599200.
Pop-Busui R, Kellogg A, Cheng H. 2008. Cyclooxygenase-2 Pathway as a Potential Therapeutic Target in Diabetic Peripheral Neuropathy. Current Drug Targets. vol 9(1): 68–76. doi: https://doi.org/10.2174/138945008783431691.
Rachmad, Y.T., Wihastuti, T.A., Miyajima, K., Fatchiyah, F., 2018. Activity of caprine CSN1S2 protein reducing the COX-2 and IL-17 expression of aorta tissue in type 2 diabetes mellitus rat. Journal of Mathematical and Fundamental Sciences. vol 50(3): 332–345. doi: https://doi.org/10.5614/j.math.fund.sci.2018.50.3.8.
Santoso B, Atmajaya TE, Tirtodiharjo MK. 2016. Kajian docking senyawa 4-[(Z)-N-(4-hidroksifenil) carboksimidoil]-2- metoksifenol sebagai inhibitor Cox-2 menggunakan plants. Prosiding Seminar Nasional Kimia UNJANI-HKI. 3-4 Agustus 2016. Bandung: Universitas Jenderal Achmad Yani. ISBN 978-602-60732-0-4. pp. 270–275.
Shi H, Dong L, Jiang J, Zhao J, Zhao G, Dang X, Lu X, Jia M. 2013. Chlorogenic acid reduces liver inflammation and fibrosis through inhibition of toll-like receptor 4 signaling pathway. Toxicology. vol 303: 107–114. doi: https://doi.org/10.1016/j.tox.2012.10.025.
Smith WL, and Murphy RC. 2016. The Eicosanoids: Cyclooxygenase, Lipoxygenase and Epoxygenase Pathways in: Biochemistry of Lipids, Lipoproteins and Membranes. Amsterdam: Elsevier. pp. 259–296. doi: https://doi.org/10.1016/B978-0-444-63438-2.00009-2.
Watanabe T, Arai Y, Mitsui Y, Kusaura T, Okawa W, Kajihara Y, Saito I. 2006. The blood pressure-lowering effect and safety of chlorogenic acid from green coffee bean extract in essential hypertension. Clinical and experimental hypertension. vol 28(5): 439–449. doi: https://doi.org/10.1080/10641960600798655.
Xu L, Stevens J, Hilton MB, Seaman S, Conrads TP, Veenstra TD, Logsdon D, Morris H, Swing DA, Patel NL, Kalen J, Haines DC, Zudaire E, St. Croix B. 2014. COX-2 inhibition potentiates antiangiogenic cancer therapy and prevents metastasis in preclinical models. Science Translational Medicine. vol 6(242): 242ra84–242ra84. doi: https://doi.org/10.1126/scitranslmed.3008455.
Copyright (c) 2019 Yohanes Bare, Dewi Ratih Tirto Sari, Yoga Tribakti Rachmad, Gabriella Candrakirana Krisnamurti, Agustina Elizabeth, Andri Maulidi
This work is licensed under a Creative Commons Attribution 4.0 International License.
COPYRIGHT AND LICENSE STATEMENT
COPYRIGHT
Biogenesis: Jurnal Ilmiah Biologi is published under the terms of the Creative Commons Attribution license. Authors hold the copyright and retain publishing rights without restriction to their work. Users may read, download, copy, distribute, and print the work in any medium, provided the original work is properly cited.
LICENSE TO PUBLISH
1. License
The use of the article will be governed by the Creative Commons Attribution license as currently displayed on http://creativecommons.org/licenses/by/4.0.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User Rights
Under the Creative Commons Attribution license, the users are free to download, reuse, reprint, modify, distribute and/or copy the content for any purpose, even commercially, as long as the original authors and source are cited. No permission is required from the authors or the publishers.
4. Co-Authorship
If the article was prepared jointly with other authors, the corresponding author warrants that he/she has been authorized by all co-authors, and agrees to inform his/her co-authors of the terms of this statement.
5. Miscellaneous
Biogenesis: Jurnal Ilmiah Biologi may conform the article to a style of punctuation, spelling, capitalization, and usage that it deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers.