Sintesis Hidroksiapatit Berbahan Tulang Ikan Layar (Istiophorus Platypterus) Menggunakan Metode Presipitasi

  • Uwais Al-Qarny Departemen Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Hasanuddin
    (ID)
  • Nurlaela Rauf Universitas Hasanuddin
    (ID)

Abstract

Sailfish bone is one of the marine biological wastes that has potential as a source of hydroxyapatite for biomedical applications. This study aims to synthesize hydroxyapatite made from sailfish bone through precipitation method with the effect of variation in calcium precursor mass and phosphate precursor concentration. Sailfish bones were calcined at 900ºC for 3 hours, then reacted with (NH4)2HPO4. The solution was adjusted to pH 8 using NaOH, precipitated for 24 hours at room temperature to produce a homogeneous precipitate, washed with aquades, and filtered. The precipitate was then dried at 100ºC for 2 hours to produce hydroxyapatite. FTIR characterization showed the presence of PO43-, OH-, and CO32- groups in all three samples. Sample C has higher absorption intensity of PO43- and OH- groups than the other two samples. The higher absorption intensity indicates more content of PO43- and OH- groups. XRD analysis showed that the three samples had dominant hydroxyapatite phase. In addition to the hydroxyapatite phase, there is also A-type carbonate apatite phase and B-type carbonate apatite phase. Sample C has the largest average crystal size, which is 28.94 nm.

Downloads

Download data is not yet available.

References

Surya, P., Nithin, A., Sundaramanickam, A., and Sathish, M. (2021). Synthesis and Characterization of Nano-hydroxyapatite from Sardinella longiceps Fish Bone and its Effects on Human Osteoblast Bone Cells. Journal of the Mechanical Behavior of Biomedical Materials, 119, ISSN: 1751-6161. DOI: 10.1016/j.jmbbm.2021.104501.

Bee, S.L., and Hamid, Z.A.A. (2020). Hydroxyapatite Derived from Food Indutry Bio-wastes: Syntheses, Properties and its Potensial Mutifunctional Applications. Ceramics International, 46 (11), ISSN: 0272-8842. DOI: 10.1016/j.ceramint.2020.04.103.

Trung, T.S., et al. (2022). Valorization of Fish and Shrimp Wastes to Nano-hydroxyapatite/Chitosan Biocomposite for Wastewater Treatment. Journal of Science: Advanced Materials and Devices, 7 (4), ISSN: 2468-2179. DOI: 10.1007/s12649-021-01557-0.

Akmal, Y., Rahman, M., Muliari, M., and Batubara, A.S. (2022). Osteocranium of the Sailfish (Istiophorus platypterus, Shaw & Nodder, 1792) from Malacca Strait. Jurnal Perikanan Universitas Gadjah Mada, 24 (2), ISSN: 2502-5066. DOI: 10.22146/jfs.73573.

Hamzah, M.S.D., et al. (2023). Diet Composition of Indo-Pacific Sailfish (Istiophorus platypterus) By-Catch in the East Coast of Peninsular Malaysia. Journal of Fisheries and Environment, 47 (3), ISSN: 2630-0702. DOI: 10.1016/S0165-7836(01)00344-7.

Ferrette, B.L.S., et al. (2021). Global Phylogeography of Sailfish: Deep Evolutionary Lineages with Implications for Fisheries Management. Hydrobiologia, 848 (17), ISSN: 0018-8158. DOI: 10.1016/B978-0-08-055294-1.00178-1.

Athinarayanan, J., Periasamy, V.S., and Alshatwi, A.A. (2020). Simultaneous Fabrications of Carbon Nanodots and Hydroxyapatite Nanoparticles from Fish Scale for Biomedical Applications. Materials Science and Engineering C, 117, ISSN: 0928-4931. DOI: 10.1016/j.msec.2020.111313.

Aizawa, M. (2020). Development of Bioceramics with Life Functions by Harnessing Crystallographic Anisotropy and their Biological Evaluations. Journal of the Ceramic Society of Japan, 128 (12), ISSN: 1348-6535. DOI: 10.2109/jcersj2.20161.

Hussin, M.S.F., Abdullah, H.Z., Idris, M.I., and Wahap, M.A.A. (2022). Extraction of Natural Hydroxyapatite for Biomedical Application—A Review. Heliyon, 8 (8), ISSN: 2405-8440. DOI: 10.1016/j.heliyon.2022.e10356.

DileepKumar, V.G., et al. (2021). A Review on the Synthesis and Properties of Hydroxyapatite for Biomedical Applications. Journal of Biomaterial Science, Polymer Editon, 33 (2), ISSN: 1568-5624. DOI: 10.1080/09205063.2021.1980985.

Ibrahim, M., Labaki, M., Giraudon, J.M., and Lamonier, J.F. (2020). Hydroxyapatite, a Multifunctional Material for Air, Water, and Soil Pollution Control: A Review. Journal of Hazardous Materials, 383, ISSN: 0304-3894. DOI: 10.1016/j.jhazmat.2019.121139.

Nikfallah, A., Mohammadi, A., Ahmadakhondi, M., and Ansari, M. (2023). Synthesis and Physicochemical Characterization of Mesoporous Hydroxyapatite and Its Application in Toothpaste Formulation. Heliyon, 9 (10), ISSN: 2405-8440. DOI: 10.1016/j.heliyon.2023.e20924.

Anggresani, L., Perawati, S., Afandi, R., and Rahmadevi. (2022). Jelly Candy Hydroxyapatite from Mackerel Fish Bone. Pharmacy and Pharmaceutical Sciences Journal, 9 (3), ISSN: 2580-8303. DOI: 10.20473/jfiki.v9i32022.279-289.

Ochoa, S.L., Lara, W.O., and Beltrán, C.E.G. (2021). Hydroxyapatite Nanoparticles in Drug Delivery: Physicochemistry and Applications. Pharmaceutics, 13 (10), ISSN: 1999-4923. DOI: 10.3390/pharmaceutics13101642.

Filip, D.G., Surdu, V.A., Paduraru, A.V., and Andronescu, E. (2022). Current Development in Biomaterials—Hydroxyapatite and Bioglass for Applications in Biomedical Field: A Review. Journal of Functional Biomaterials, 13 (4), ISSN: 2079-4983. DOI: 10.3390/jfb13040248.

Taji, L.S., Wiyono, D.E., Karisma, A.D., Surono, A., and Ningrum, E.O. (2022). Hydroxyapatite Based Material: Natural Resources, Synthesis Methods, 3D Print Filament Fabrication, and Filament Filler. The Journal of Engineering, 8 (1), ISSN: 2807-5064. DOI: 10.12962.j23378557.v8i1.a12830.

Pu’ad, N.A.S.M., Haq, R.H.A., Abdullah, H.Z., Noh, H.M., Idris, M.I., and Lee, T.C. (2020). Synthesis Method of Hydroxyapatite: A Review. Materials Today: Proceedings, 29 (1), ISSN: 2214-7853. DOI: 10.1016/j.matpr.2020.05.536.

Charlena, Suparto, I.H., and Laia, D.P.O. (2023). Synthesis and Characterization of Hydroxyapatite from Polymesoda placans Shell using Wet Precipitation Method. Jurnal Bios Logos, 13 (1), ISSN: 2656-3282. DOI: 10.35799/jlb.v13i1.47454.

Haris, A., Fadli, A., dan Yenti, S.R. (2016). Sintesis Hidroksiapatit dari Limbah Tulang Sapi menggunakan Metode Presipitasi dengan Variasi Rasio Ca/P dan Konsentrasi H3PO4. JOM Fteknik, 3 (2), ISSN: 2355-6870. https://jom.unri.ac.id/index.php/JOMFTEKNIK/article/view/11510.

Rahayu, S., Kurniawidi, D.W., dan Gani, A. (2018). Pemanfaatan Limbah Cangkang Kerang Mutiara (Pinctada maxima) sebagai Sumber Hidroksiapatit. Jurnal Pendidikan Fisika dan Teknologi, 4 (2), ISSN: 2407-6902. DOI: 10.29303/jpft.v4i2.839.

Fatimah, S., Ragadhita, R., Al Husaeni, D.F., and Nandiyanto, A.B.D. (2022). How to Calculate Crystallite Size from X-Ray Diffraction (XRD) using Scherrer Method. Asean Journal of Science and Engineering, 2 (1), ISSN: 2776-5938. DOI: 10.17509/ajse.v2i1.37647.

Muarif, M.F., Yusuf, Y., and Agipa, A.I. (2024). FTIR, XRD, and SEM-EDX Characterization of Synthesized B-Type Carbonated Hydroxyapatite (CHAp) Based on Crab Shells. Journal of Energy, Material, and Instrumentation Technology, 5 (1), ISSN: 2747-2043. DOI: 10.23960/jemit.v5i1.241.

Anggraini, R.M., Restianingsih, T., Deswardani, F., Fendriani, Y., and Purba, R.A.P. (2023). Characterization of Hydroxyapatite from Channa striata and Scomberomorus commerson Fish Bone by Heat Treatment. JoP, 9 (1), ISSN: 2502-2016. DOI: 10.22437/jop.v9i1.28727.

Sirait, M., Sinulingga, K., Siregar, N., and Siregar, R.S.D. (2020). Synthesis of Hydroxyapatite from Limestone by using Precipitation Method. Journal of Physics: Conference Series, 1462 (1), ISSN: 1742-6596. DOI: 10.1088/1742-6596/1462/1/012058.

Kumar, K.C.V., et al. (2021). Spectral Characterization of Hydroxyapatite Extracted from Black Sumatra and Fighting Cock Bone Samples: A Comparative Analysis. Saudi Journal of Biological Sciences, 28, ISSN: 1319-562x. DOI: 10.1016/j.sjbs.2020.11.020.

Szterner, P., and Biernat, M. (2022). The Synthesis of Hydroxyapatite by Hydrothermal Process with Calcium Lactate Pentahydrate: The Effect of Reagent Concentrations, pH, Temperature, and Pressure. Bioinorganic Chemistry and Applications, 2022 (1), ISSN: 1687-479x. DOI: 10.1155/2022/3481677.

Castro, M.A.M., et al. (2022). Synthesis of Hydroxyapatite by Hydrothermal and Microwave Irradiation Methods from Biogenic Calcium source varying pH and Synthesis Time. Boletin de La Sociedad Española de Cerámica y Vidrio, 61 (1), ISSN: 0366-3175. DOI: 10.1016/j.bsecv.2020.06.003.

Prekajski, M., et al. (2016). Ouzo Effect—New simple Nanoemulsion method for Synthesis of Strontium Hydroxyapatite Nanospheres. Journal of the European Ceramic Society, 36 (5), ISSN: 0955-2219. DOI: 10.1016/j.jeuceramsoc.2015.11.045.

Hadiwinata, B., dkk. (2023). Pengaruh Suhu Sintering pada Sintesis Hidroksiapatit dari Tepung CaO Cangkang Rajungan (Portunus sp.). Marinade, 6 (2), ISSN: 2654-4415. http://ojs.umrah.ac.id/index.php/marinade.

Rey, C., Combes, C., Drouet, C., and Grossin, D. (2011). Bioactive Ceramics: Physical Chemistry. In: Ducheyne, P., Healy, K., Hutmacher, D., Grainger, D.E., and Kickpatrick, J. (ed.). Comprehensive Biomaterials, pp. 187-221. Elsevier. DOI: 10.1016/B978-0-08-055294-1.00178-1.

Rahmaniah. (2019). Sintesis dan Karakterisasi Hidroksiapatit dari Cangkang Kerang Darah (Anadara granosa) sebagai bahan baku Semen Tambal Gigi. Jurnal Teknosains, 13 (1), ISSN: 2657-036x. DOI: 10.24252/teknosains.v13i1.7832.

Wardani, N.S., Fadli, A., dan Irdoni. (2015). Sintesis Hidroksiapatit dari Cangkang Telur dengan Metode Presipitasi. JOM Fteknik. 2 (1), ISSN: 2355-6870. https://jom.unri.ac.id/index.php/JOMFTEKNIK/article/view/6297.

Barabás, R., Czikó, M., Dékány, I., Bizo, L., and Bogya, E.S. (2013). Comparative Study of Particle Size Analysis of Hydroxyapatite-Based Nanomaterials. Chemical Papers, 67 (11), ISSN: 1336-9075. DOI: 10.2478/s11696

Published
2025-02-03
How to Cite
Al-Qarny, U., & Rauf, N. (2025). Sintesis Hidroksiapatit Berbahan Tulang Ikan Layar (Istiophorus Platypterus) Menggunakan Metode Presipitasi. JFT: Jurnal Fisika Dan Terapannya, 11(2), 136-147. https://doi.org/10.24252/jft.v11i2.50008
Section
Artikel
Abstract viewed = 85 times