KARAKTERISTIK SIFAT OPTIK NANOPARTIKEL KARBON (CARBON DOTS) DENGAN METODE UV-VIS DRS (ULTRAVIOLET-VISIBLE DIFFUSE REFLECTANCE SPECTROSCOPY)

  • Jumardin Universitas Islam Negeri Alauddin Makassar
    (ID)
  • Akhiruddin Maddu IPB University
    (ID)
  • Koekoeh Santoso IPB University
    (ID)
  • Isnaeni Badan Riset dan Inovasi Nasional, Indonesia
    (ID)
Kata Kunci: Carbon Dots, Energy, Nanoparticles, Spectroscopy.

Abstrak

Research on the synthesis of Carbon Dots using the laser ablation method has been carried out at a time duration of 1, 2, and 3 hours (energy 60 mJ, wavelength 1064 nm and frequency 10 Hz). This research uses organic material from Tea and Toluene as the carbon solvent. The characterization method uses a UV-Vis Diffuse Reflectance Spectroscopy (UV-Vis DRS) spectrum to measure the reflectance value and uses the Kubelka-Munk equation to determine the relationship between the absorbance coefficient parameter (s) and the scattering reflectance coefficient (k). The size and morphological characterization methods used Particle Size Analyzer (PSA) and Transmission Electron Microscopy, while the functional group characteristics used the Fourier Transform InfraRed (FTIR) tool. FTIR spectra show the O-H group which is a hydroxyl bond and N-H is a carboxylic acid. The results of measurement and analysis of bandgap energy at different time durations for direct transition (n=2) were 1 hour (3.62 eV, 342.49 nm), 2 hours (3.24 eV, 380.61 nm) and 3 hours (2.74, 451.82 nm). Indirect transitions (n=1/2) were 1 hour (3.17 eV, 391.02 nm), 2 hours (2.50 eV, 495.36 nm) and 3 hours (2.21 eV, 559.04).

 

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

Referensi

Abdullahi, S. S., Güner, S., Koseoglu, Y., Musa, I. M., Adamu, B. I., & Abdulhamid, M. I. (2016). Sımple Method For The Determınatıon of Band Gap of a Nanopowdered Sample Usıng Kubelka Munk Theory. Journal of the Nigerian Association of Mathematical Physics, 35, 12.
Ali, A. G., Dejene, B. F., & Swart, H. C. (2016). The influence of different species of gases on the luminescent and structural properties of pulsed laser-ablated Y2O2S:Eu3+ thin films. Applied Physics A, 122(5), 534. https://doi.org/10.1007/s00339-016-0062-3.
Antonov, R. D., & Johnson, A. T. (1999). Subband Population in a Single-Wall Carbon Nanotube Diode. Physical Review Letters, 83(16), 3274–3276. https://doi. org/10. 1103/PhysRevLett. 83. 3274.
Bajpai, S. K., D’Souza, A., & Suhail, B. (2019). Blue light-emitting carbon dots (CDs) from a milk protein and their interaction with Spinacia oleracea leaf cells. International Nano Letters, 9(3), 203–212. https://doi.org/10.1007/s40089-019-0271-9.
Bandi, R., Gangapuram, B. R., Dadigala, R., Eslavath, R., Singh, S. S., & Guttena, V. (2016). Facile and green synthesis of fluorescent carbon dots from onion waste and their potential applications as sensor and multicolour imaging agents. RSC Advances, 6 (34), 28633–28639. https://doi.org/10.1039/C6RA01669C.
Baskoutas, S., & Terzis, A. F. (2006). Size-dependent band gap of colloidal quantum dots. Journal of Applied Physics, 99 (1), 013708. https://doi. org/10. 1063/1. 2158502.
Chunduri, L. A. A., Kurdekar, A., Patnaik, S., Dev, B. V., Rattan, T. M., & Kamisetti, V. (2016). Carbon Quantum Dots from Coconut Husk: Evaluation for Antioxidant and Cytotoxic Activity. 8.
Das, S., Ngashangva, L., & Goswami, P. (2021). Carbon Dots: An Emerging Smart Material for Analytical Applications. Micromachines, 12 (1), 84. https://doi. org/10. 3390/ mi12010084.
Dewi, A. R. C., Aji, M. P., & Sulhadi, S. (2016). Absorbance Spectrum Carbon Nanodots (C-Dots) Daun Tembakau. Prosiding Seminar Nasional Fisika (E-Journal) SNF 2016 UNJ, SNF 2016-MPS-129-SNF 2016-MPS-134. https://doi. org/10. 21009/ 0305020225.
Golden, M. S., Knupfer, M., Fink, J., Armbruster, J. F., Cummins, T. R., Romberg, H. A., Roth, M., Sing, M., Schmidt, M., & Sohmen, E. (1995). The electronic structure of fullerenes and fullerene compounds from high-energy spectroscopy. Journal of Physics: Condensed Matter, 7(43), 8219–8247. https://doi.org/10.1088/0953-8984/7/43/004.
Haris, A., Widodo, D., S., Nuriyanto, R. (2014). Sintesis dan Karakterisasi Nanopartikel Fotokatalis TiO2 dengan Doping Tembaga dan Sulfur serta Aplikasinya pada Degredasi Senyawa Fenol. Jurnal Sains dan Matematika. Vol. 22 (2): 48-51.
Himaja, A. L., Karthik, P. S., Sreedhar, B., & Singh, S. P. (2014). Synthesis of Carbon Dots from Kitchen Waste: Conversion of Waste to Value Added Product. Journal of Fluorescence, 24(6), 1767–1773. https://doi.org/10.1007/s10895-014-1465-1.
Hussein, N. L., Khashan, K. S., Rasheed, H. M., Yahaia, H., & ALHaddad, R. M. S. (2019). Simulation of Optical Energy Gap for Synthesis Carbon Quantum Dot by Laser Ablation. Iraqi Journal of Science, 5.
Jumardin, J., Maddu, A., Santoso, K., & Isnaeni, I. (2021). Synthesis of Carbon Dots (CDs) and Determination of Optical Gap Energy with Tauc Plot Method. Jambura Physics Journal, 3(2), 73–86. https://doi.org/10.34312/jpj.v3i2.11235.
Kang, X. (2018). Improving the photocatalytic activity of graphitic carbon nitride by thermal treatment in a high-pressure hydrogen atmosphere. Progress in Natural Science, 6.
Kim, M., Osone, S., Kim, T., Higashi, H., & Seto, T. (2017). Synthesis of Nanoparticles by Laser Ablation: A Review. 34, 11.
Morales, A. E., Mora, E. S., & Pal, U. (2007). Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. 6.
Nikov, R. G., Nedyalkov, N. N., Atanasov, P. A., & Karashanova, D. B. (2017). Laser-assisted fabrication and size distribution modification of colloidal gold nanostructures by nanosecond laser ablation in different liquids. Applied Physics A, 123(7), 490. https://doi.org/10.1007/s00339-017-1105-0.
Pandiyan, S., Arumugam, L., Srirengan, S. P., Pitchan, R., Sevugan, P., Kannan, K., Pitchan, G., Hegde, T. A., & Gandhirajan, V. (2020). Biocompatible Carbon Quantum Dots Derived from Sugarcane Industrial Wastes for Effective Nonlinear Optical Behavior and Antimicrobial Activity Applications. ACS Omega, 5(47), 30363–30372. https://doi.org/10.1021/acsomega.0c03290.
Putro, P. A., & Maddu, A. (2019). Sifat Optik Carbon Dots dari Daun Bambu Hasil Sintesis Hijau Berbantuan Gelombang Mikro. Wahana Fisika, 4 (1), 47. https://doi. org/10. 17509/wafi. v4i1. 15569.
Qosim, M., & Santoso, I. (2015). Kajian Struktur Pita Elektronik Graphene dan Graphane Menggunakan Model Ikatan Kuat Realistik dengan Ketakteraturan. 55, 6.
Reyes, D. (2016). Laser Ablated Carbon Nanodots for Light Emission. 11.
Shen, J., Shang, S., Chen, X., Wang, D., & Cai, Y. (2017). Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging. Materials Science and Engineering: C, 76, 856–864. https://doi.org/10.1016/j.msec.2017.03.178.
Singh, S. C., & Gopal, R. (2012). Drop shaped zinc oxide quantum dots and their self-assembly into dendritic nanostructures: Liquid assisted pulsed laser ablation and characterizations. Applied Surface Science, 258 (7), 2211–2218. https://doi. org/10. 1016/j. apsusc. 2011. 05. 018.
Siuzdak, K., Sawczak, M., Klein, M., Nowaczyk, G., Jurga, S., & Cenian, A. (2014). Preparation of platinum modified titanium dioxide nanoparticles with the use of laser ablation in water. Phys. Chem. Chem. Phys., 16 (29), 15199–15206. https://doi. org/10. 1039/C4CP01923G.
Suharman, A., & Vinsiah, R. (2015). The Effect of Carbonisation Temperature Variation to the Adsorption Ability of Rubber Fruit Shell Activated Carbon. 10.
Wei, J., Geng, S., Pitkänen, O., Järvinen, T., Kordas, K., & Oksman, K. (2020). Green Carbon Nanofiber Networks for Advanced Energy Storage. 11.
Diterbitkan
2022-07-31
Bagian
Artikel
Abstrak viewed = 1162 times