A LITERATURE REVIEW: THE IMPORTANCE OF TERM NORMALIZATION IN VECTOR SPACE MODEL
Abstract
In today's digitally inundated era, accessing information is more accessible yet challenging due to the sheer volume available. This article underscores the pivotal role of VSM in managing vast data and enhancing retrieval accuracy by ranking documents based on query similarity. Term normalization, a part of VSM development, standardizes words for indexing, improving accuracy by addressing word variations. The study's methodology involved a systematic literature review, data collection via electronic databases, and thematic analysis. The research findings highlight vital aspects: the fundamentals of information retrieval systems, the working principle of VSM in document sorting, and the process of term normalization. Various methods within term normalization, such as tokenizing, filtering, stemming, and term weighting (e.g., TF, IDF, Cosine Similarity), are elucidated for refining document relevance. Discussions underscore the impact of term normalization on information retrieval, emphasizing heightened accuracy, efficiency, and reduced error rates. In the research paper, five studies that showcased successful applications of VSM across diverse domains were referenced. These domains included karaoke song searches, thesis examiner selection, pest identification in rice plants, hadith interpretation, and library material searches. Each study demonstrated the effectiveness and versatility of VSM in solving various problems in different fields. In conclusion, VSM emerges as a potent tool in managing information overload, particularly when coupled with normalization techniques. The studies reviewed illustrate VSM's efficacy in delivering precise results, affirming its status as a preferred method in information retrieval systems due to its accuracy and effectiveness.
Downloads
References
Amin, F. (2012, June 18). Sistem Temu Kembali Informasi dengan Metode Vector Space Model. JURNAL SISTEM INFORMASI BISNIS,2(2). https://doi.org/10.21456/vol2iss2pp078-083
Amrizal, V. (2018, November 28). PENERAPAN METODE TERM FREQUENCY INVERSE DOCUMENT FREQUENCY (TF-IDF) DAN COSINE SIMILARITY PADA SISTEM TEMU KEMBALI INFORMASI UNTUK MENGETAHUI SYARAH HADITS BERBASIS WEB (STUDI KASUS: HADITS SHAHIH BUKHARI-MUSLIM). JURNAL TEKNIK INFORMATIKA, 11(2), 149–164. https://doi.org/10.15408/jti.v11i2.8623
Anna, Hendini, A. (2019, June 26). IMPLEMENTASI VECTOR SPACE MODEL PADA SISTEM PENCARIAN MESIN KARAOKE. Uinjkt. https://www.academia.edu/39702623/IMPLEMENTASI_VECTOR_SPACE_MODEL_PADA_SISTEM_PENCARIAN_MESIN_KARAOKE
Bahri, S. (2020, August 2). Aplikasi Pencarian Bahan Pustaka Di Perpustakaan Menggunakan Metode Vector Space Model. JIMP - Jurnal Informatika Merdeka Pasuruan, 5(2). https://media.neliti.com/media/publications/465266-none8c72b24a.pdf
Harna Yossy, E. (2020, June 15). Metode-Metode Information Retrieval | BINUS Online. BINUS Online. Retrieved October 18, 2023, from https://onlinelearning.binus.ac.id/computer-science/post/metode-metode - information-retrieval
Irmawati, I. (2017, May 1). SISTEM TEMU KEMBALI INFORMASI PADA DOKUMEN DENGAN METODE VECTOR SPACE MODEL. Jurnal Ilmiah FIFO, 9(1), 74. https://doi.org/10.22441/fifo.v9i1.1444
Iswika, O. D., Sa’diyah, L., & Asep, A. (2022, June 24). Pengaruh Pemahaman Sistem Temu Kembali Informasi Pemustaka Terhadap Pemanfaatan OPAC (Online Public Access Catalog) Di UPT Perpustakaan Universitas Dehasen Bengkulu. LIBRARIA: Jurnal Perpustakaan, 10(1), 31. https://doi.org/10.21043/libraria.v10i1.13910
Nazya, M. F. (2017). KONSEP Customer Relationship Management (CRM) PADA SISTEM TEMU KEMBALI PERPUSTAKAAN DIGITAL METODE Weight Adjusted K-Nearest Neighbor (WAK-NN) DAN Minimum Spanning Tree (MST) “STUDY KASUS PERPUSTAKAAN UIN SUSKA RIAU”. Sistem Seleksi Proposal Tugas Akhir, 2(3).
Prabowo, Y. D., Marselino, T. L., & Suryawiguna, M. (2019, April 26). PembentukanVector Space Model Bahasa Indonesia Menggunakan Metode Word to Vector. Jurnal Buana Informatika, 10(1), 29 https://doi.org/10.24002/jbi.v10i1.2053
Siregar, R. R. A., Sinaga, F. A., & Arianto, R. (2017). Aplikasi Penentuan Dosen Penguji Skripsi Menggunakan Metode TF-IDF dan Vector Space Model. Computatio: Journal of Computer Science and Information Systems, 1(2), 171-186.
Triana, A., Saptono, R., & Sulistyo, M. E. (2014). Pemanfaatan Metode Vector Space Model dan Metode Cosine Similarity pada Fitur Deteksi Hama dan Penyakit Tanaman Padi. ITSMART: Jurnal Teknologi dan Informasi, 3(2), 90-95.
Copyright (c) 2024 Fayyaz Mubarak Hasyim
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
By submitting your manuscript to our journal, you are following Copyright and License