OPTIMIZATION OF ASYMMETRIC BILATERAL COMPLEX FENESTRATION SYSTEMS IN STATE ELEMENTARY SCHOOL CLASSROOMS IN INDONESIA
Abstract
Abstract_ Penelitian ini bertujuan untuk meningkatkan kinerja pencahayaan alami siang hari (PASH) dengan menggunakan sistem penetrasi kompleks (CFS) bilateral asimetris di ruang kelas hipotetis yang terletak di dua kota tropis di Indonesia, yaitu Bandung dan Lhokseumawe, yang masing-masing terletak di sebelah selatan dan utara garis khatulistiwa. Bandung merupakan kota tropis diatas pegunungan, sedangkan Lhokseumawe merupakan kota pesisir. Optimalisasi dilakukan untuk keempat orientasi mata angin. Kinerja PASH ruang kelas dinilai dengan menggunakan metrik aUDI250-750lx, aUDI100-3000lx, sDA300/50%, dan ASE1000.250. Kondisi awal menunjukkan performa pencahayaan siang hari yang tidak memadai ditunjukkan oleh nilai aUDI100-3000lx yang rendah (di bawah 80%) dan nilai ASE1000,250 yang tidak memuaskan (di atas 10%). Untuk memenuhi standar performa pencahayaan siang hari yang baik, penelitian ini menggunakan metode simulasi komputasi untuk kondisi tahunan. Selanjutnya, algoritma RBFOpt digunakan melalui Opossum untuk melakukan optimasi. Berdasarkan hasil optimasi, integrasi CFS ke dalam selubung bangunan menghasilkan peningkatan kinerja PASH di kedua lokasi.
Keywords: Penetrasi kompleks; Pencahayaan alami siang hari; Bukaan asimetris; Optimasi.
Abstrak_ This study aims to enhance the daylighting performance of an asymmetric bilateral complex fenestration system (CFS) in a hypothetical classroom located in two Indonesian tropical cities, namely Bandung and Lhokseumawe, which are located slightly south and north of the equator, respectively. Bandung is a mountainous tropical city, whereas Lhokseumawe is a coastal city. Optimization is conducted for all four cardinal orientations. The classroom's daylight performance is assessed using aUDI250-750lx, aUDI100-3000lx, sDA300/50%, and ASE1000,250 metrics. The baseline conditions reveal inadequate daylighting performance with a low aUDI100-3000lx reading (below 80%) and an unsatisfactory ASE1000,250 value (above 20%). To meet the good daylighting performance standards, this study utilizes a computational simulation method for annual daylight simulation. Furthermore, the RBFOpt algorithm was used through Opossum to conduct optimization. According to the optimization results, the integration of CFS into the building's envelope results in improved daylight performance in both locations.
Kata kunci: Complex fenestration; Daylighting; Asymmetrical bilateral opening; Optimization.
Downloads
References
Ander, G. D. (2016). Daylighting. Whole Building Design Guide (WBDG). https://www.wbdg.org/resources/daylighting
Atthaillah, A., & Bintoro, A. (2019a). Useful Daylight Illuminance (UDI) pada Sekolah Dasar Negeri 1 (Satu) Banda Sakti Lhokseumawe, Aceh. Temu Ilmiah Ikatan Peneliti Lingkungan Binaan Indonesia (IPLBI) 7. https://doi.org/10.32315/ti.8.c099
Atthaillah, A., & Bintoro, A. (2019b). Useful daylight illuminance (UDI) pada ruang belajar sekolah dasar di kawasan urban padat tropis (studi kasus: SD Negeri 2 dan 6 Banda Sakti, Lhokseumawe, Aceh, Indonesia). Langkau Betang: Jurnal Arsitektur, 6(2), 72. https://doi.org/10.26418/lantang.v6i2.33940
Atthaillah, Mangkuto, R. A., & Koerniawan, M. D. (2022). Investigation of Direct Sunlight in Existing Classroom Design in Indonesia: Case Study of Lhokseumawe. In M. Awang, L. Ling, & S. S. Emamian (Eds.), Advances in Civil Engineering Materials (pp. 135–144). Springer Singapore.
Atthaillah, Mangkuto, R. A., Koerniawan, M. D., Hensen, J. L. M., & Yuliarto, B. (2022). Optimization of daylighting design using self-shading mechanism in tropical school classrooms with bilateral openings. Journal of Daylighting, 9(2), 117–136. https://doi.org/https://dx.doi.org/10.15627/jd.2022.10
Atthaillah, Mangkuto, R. A., Koerniawan, M. D., & Yuliarto, B. (2022). On the Interaction between the Depth and Elevation of External Shading Devices in Tropical Daylit Classrooms with Symmetrical Bilateral Openings. Buildings, 12(6). https://doi.org/10.3390/buildings12060818
Badan Standardisasi Nasional (BSN). (2000). SNI 03-6197: Konservasi Energi pada Sistem Pencahayaan. Badan Standardisasi Nasional.
Bahdad, A. A. S., Fadzil, S. F. S., & Taib, N. (2020). Optimization of daylight performance based on controllable light-shelf parameters using genetic algorithms in the tropical climate of Malaysia. Journal of Daylighting, 7(1), 122–136. https://doi.org/10.15627/jd.2020.10
Bakmohammadi, P., & Noorzai, E. (2020). Optimization of the design of the primary school classrooms in terms of energy and daylight performance considering occupants’ thermal and visual comfort. Energy Reports, 6, 1590–1607. https://doi.org/https://doi.org/10.1016/j.egyr.2020.06.008
Boubekri, M. (2008). Daylighting, Architecture and Health: Building design strategies. Elsevier.
Boubekri, M., Lee, J., Bub, K., & Curry, K. (2020). Impact of daylight exposure on sleep time and quality of elementary school children. European Journal of Teaching and Education, 2(2), 10–17.
Brembilla, E., Chi, D. A., Hopfe, C. J., & Mardaljevic, J. (2019). Evaluation of climate-based daylighting techniques for complex fenestration and shading systems. Energy and Buildings, 203, 109454. https://doi.org/https://doi.org/10.1016/j.enbuild.2019.109454
Costa, A., & Nannicini, G. (2018). RBFOpt: an open-source library for black-box optimization with costly function evaluations. Mathematical Programming Computation, 10(4), 597–629. https://doi.org/10.1007/s12532-018-0144-7
de Vries, S. B., Loonen, R. C. G. M., & Hensen, J. L. M. (2021). Multi-state vertical-blinds solar shading – Performance assessment and recommended development directions. Journal of Building Engineering, 40, 102743. https://doi.org/https://doi.org/10.1016/j.jobe.2021.102743
Decia, I., Fernández, E., & Ezzatti, P. (2019). A fast GPU algorithm for complex fenestration systems optimization. Building Simulation Conference Proceedings, 7, 4936–4943. https://doi.org/10.26868/25222708.2019.211287
Geisler-Moroder, D., Lee, E. S., & Ward, G. J. (2017). Validation of the five-phase method for simulating complex fenestration systems with radiance against field measurements. Proceedings for the 15th International Conference of the International Building Performance Simulation Association.
Heschong, L., Wright, R., & Okura, S. (2000). Daylighting and Productivity: Elementary School Studies,” in Efficiency and Sustanability.
Idrus, I., Rahim, R., Hamzah, B., Mulyadi, R., & Jamala, N. (2019). Evaluasi Pencahayaan Alami Ruang Kelas di Areal Pesisir Pantai Sulawesi Selatan. Linears, 2(2).
Idrus, I., Ramli Rahim, M., Hamzah, B., & Jamala, N. (2019). Daylight intensity analysis of secondary school buildings for environmental development. IOP Conf. Series: Earth and Environmental Science 382, 012022. https://doi.org/10.1088/1755-1315/382/1/012022
Kemdikbud. (2020). Data Referensi Pendidikan. https://referensi.data.kemdikbud.go.id/index11_sd.php
Kementerian Pendidikan Nasional RI. (2011). Peraturan Menteri Pendidikan Nasional No 32 Tahun 2011 Lampiran II: Standar dan Spesifikasi Teknis Rehabilitasi Ruang Kelas Rusak, Pembangunan Ruang Kelas Baru Beserta Perabotnya, dan Pembangunan Ruang Perpustakaan Beserta Perabotnya untuk SD/SDLB. Kementerian Pendidikan Nasional.
Khidmat, R. P., Fukuda, H., Kustiani, Paramita, B., Qingsong, M., & Hariyadi, A. (2022). Investigation into the daylight performance of expanded-metal shading through parametric design and multi-objective optimisation in Japan. Journal of Building Engineering, 51, 104241. https://doi.org/https://doi.org/10.1016/j.jobe.2022.104241
Lechner, N. (2007). Heating, Cooling, Lighting: Strategi Desain untuk Arsitektur (2nd ed.). PT Raja Grafindo Persada.
Mardaljevic, J. (2000). Daylight simulation: validation, sky models and daylight coefficients. De Montfort University, UK.
Mardaljevic, J., Andersen, M., Roy, N., & Christoffersen, J. (2011). Daylighting metrics for residential buildings. Proceedings of the 27th Session of the CIE.
Mashaly, I. A., Garcia-Hansen, V., Isoardi, G., & Cholette, M. E. (2021). CFStrace: An evaluation method to include complex fenestration systems in the façade design process. Solar Energy, 217, 253–262. https://doi.org/https://doi.org/10.1016/j.solener.2021.01.073
McNeil, A., & Lee, E. S. (2012). A validation of the Radiance three-phase simulation method for modelling annual daylight performance of optically complex fenestration systems. Journal of Building Performance Simulation, 6(1), 24–37. https://doi.org/10.1080/19401493.2012.671852
Mediastika, C. E. (2013). Hemat Energi Dan Lestari Lingkungan. CV Andi Offset.
Nabil, A., & Mardaljevic, J. (2005). Useful daylight illuminance: a new paradigm for assessing daylight in buildings. Lighting Research & Technology, 37(1), 41–57.
Primanti, A. H., Mangkuto, R. A., Koerniawan, M. D., Loonen, R. C. G. M., & de Vries, S. B. (2020). Sensitivity analysis on daylighting, visual comfort, and energy consumption of automated venetian blinds for open-plan offices in tropical climate. Proceedings of the EduARCHsia & Senvar 2019 International Conference (EduARCHsia 2019), 48–52. https://doi.org/10.2991/aer.k.200214.007
R. M. Sakiyama, N., C. Carlo, J., Mazzaferro, L., & Garrecht, H. (2021). Building Optimization through a Parametric Design Platform: Using Sensitivity Analysis to Improve a Radial-Based Algorithm Performance. Sustainability, 13(10). https://doi.org/10.3390/su13105739
Reinhart, C. F., & Walkenhorst, O. (2001). Validation of dynamic RADIANCE-based daylight simulations for a test office with external blinds. Energy and Buildings, 33(7), 683–697. https://doi.org/10.1016/S0378-7788(01)00058-5
Robert McNeel & Associates. (2019). Rhinoceros - NURBS. https://www.rhino3d.com/nurbs
Roudsari, M. S., & Pak, M. (2010). Ladybug: A Parametric Enviromental Plugin For Grasshopper to Help Designers Create an Enviromentally-Conscious Design. 13th Conference of International Bui;Ding Performance Simulation Association, Chambery, France, 25, 11–24. https://doi.org/citeulike-article-id:8354697
Rutten, D. (2010). Evolutionary Principles applied to Problem Solving - Grasshopper. https://www.grasshopper3d.com/profiles/blogs/evolutionary-principles
Shishegar, N., Boubekri, M., Stine-Morrow, E. A. L., & Rogers, W. A. (2021). Tuning environmental lighting improves objective and subjective sleep quality in older adults. Building and Environment, 204, 108096. https://doi.org/https://doi.org/10.1016/j.buildenv.2021.108096
Subramaniam, S. (2017). Daylighting Simulations with Radiance using Matrix-based Methods. https://www.radiance-online.org/learning/tutorials/matrix-based-methods
Tabadkani, A., Banihashemi, S., & Hosseini, M. R. (2018). Daylighting and visual comfort of oriental sun responsive skins: A parametric analysis. Building Simulation, 11(4), 663–676. https://doi.org/10.1007/s12273-018-0433-0
United States Green Building Council (USGBC). (2017). 100002149 | U.S. Green Building Council. https://www.usgbc.org/leedaddenda/100002149
Ward, G., & Rubinstein, F. (1988). A New Technique for Computer Simulation of Illuminated Spaces. Journal of the Illuminating Engineering Society, 17(1).
Wibowo, R., Kindangen, J. I., & Sangkertadi. (2017). Sistem pencahayaan alami dan buatan di ruang kelas sekolah dasar di kawasan perkotaan. Jurnal Arsitektur Daseng, 6(1), 87–98. https://ejournal.unsrat.ac.id/index.php/daseng/article/view/16770/pdf
Copyright (c) 2023 Dhafira Ramadhani, Rizki Armanto Mangkuto, R. Triyogo, Atthaillah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
By submitting your manuscript to our journal, you are following Copyright and License