Kenyamanan Termal pada Bangunan Berventilasi Alami di Iklim Tropis

  • Muhammad Iqbal Universitas Malikussaleh
    (ID)
  • Atthaillah Atthaillah Program Studi Arsitektur, Fakultas Teknik, Universitas Malikussaleh
    (ID)
  • Adi Safyan Program Studi Arsitektur, Fakultas Teknik, Universitas Malikussaleh
    (ID)
  • Lena Indriani Program Studi Arsitektur, Fakultas Teknik, Universitas Malikussaleh
    (ID)
  • Aura Mutiara Sina Program Studi Arsitektur, Fakultas Teknik, Universitas Malikussaleh
    (ID)
Keywords: Thermal Comfort, Natural Ventilation, Temperature and Humidity, Wind Speed, TSV and TCV.

Abstract

Energy consumption in buildings plays a crucial role in determining efficiency and environmental impact. Natural ventilation offers a solution to reduce energy consumption by utilizing outdoor airflow to enhance thermal comfort without significant energy use. This study examines the effects of weather conditions, including temperature, humidity, and wind speed, on the thermal comfort of occupants in naturally ventilated buildings with single-sided openings. Data were collected through measurements of indoor and outdoor weather conditions over 21 days and a perception survey involving 138 respondents, using randomly selected questionnaires. The results indicate that indoor temperature is highly influenced by incoming wind flow, with a strong correlation between outdoor relative humidity and indoor temperature (R = 0.90). A majority of respondents (90.58%) expressed a preference for cooler indoor conditions, indicating discomfort within the building. The study also found consistency in user thermal comfort preferences based on the Thermal Sensation Vote (TSV) and Thermal Comfort Vote (TCV) scales. Recommendations include further investigations into variations in window size, window orientation, and the impact of solar radiation to improve indoor temperature and humidity control, enhancing thermal comfort for building occupants.

Downloads

Download data is not yet available.

References

Albuquerque, D. P., O’Sullivan, P. D. and da Graça, G. C. (2021) ‘Effect of window geometry on wind driven single sided ventilation through one opening’, Energy and Buildings, 245, 111060. https://doi.org/10.1016/j.enbuild.2021.111060

Ali, R. A. et al. (2023) ‘Natural ventilation as a passive cooling strategy for multi-story buildings: analytic vertical skycourt formations’, City, Territory and Architecture, 10(1). https://doi.org/10.1186/s40410-023-00212-6

Brager, Gail S., and Richard J. De Dear. 1998. “Thermal Adaptation in the Built Environment: A Literature Review.” Energy and Buildings 27(1): 83–96, https://doi.org/10.1016/S0378-7788(97)00053-4

Du, Y. et al. (2022) ‘Impact of natural window views on perceptions of indoor environmental quality: An overground experimental study’, Sustainable Cities and Society, 86(112), 104133. https://doi.org/10.1016/j.scs.2022.104133

Hakim, F. N. et al. (2021) ‘Building Envelope Design Optimization of a Hypothetical Classroom Considering Energy Consumption, Daylight, and Thermal Comfort: Case Study in Lhokseumawe, Indonesia’, International Journal of Technology, 12(6), 1217–1227. https://doi.org/10.14716/IJTECH.V12I6.5203

He, D. and Isa, M. H. M. (2024) ‘Investigation of indoor thermal comfort of heritage buildings in hot summer and cold winter zone of China: A case study’, Case Studies in Thermal Engineering, 53, p. 103820. https://doi.org/10.1016/j.csite.2023.103820

Heiselberg, P., and M. Perino. 2010. “Short-Term Airing by Natural Ventilation - Implication on IAQ and Thermal Comfort.” Indoor Air 20(2): 126–40, https://doi.org/10.1111/j.1600-0668.2009.00630.x

Hildayanti, A. and Wasilah (2022) ‘Pendekatan Arsitektur Bioklimatik Sebagai Bentuk Adaptasi Bangunan Terhadap Iklim’, Nature: National Academic Journal of Architecture, 9(1), 29–41. https://doi.org/10.24252/nature.v9i1a3

Indraganti, Madhavi. 2010. “Adaptive Use of Natural Ventilation for Thermal Comfort in Indian Apartments.” Building and Environment 45(6): 1490–1507. http://dx.doi.org/10.1016/j.buildenv.2009.12.013.

Iqbal, M. et al. (2023) ‘Investigation of discharge coefficient of louvre openings in naturally ventilated buildings’, E3S Web of Conferences, 396, 1–8. https://doi.org/10.1051/e3sconf/202339602030

Iqbal, M., Dastur, M. and Fikry, M. (2022) ‘Indoor Thermal Comfort Improvement of the Naturally Ventilated House in Tropical Climate, Indonesia’, Proceedings of Malikussaleh International Conference on Multidisciplinary Studies (MICoMS), 3, 00007. https://doi.org/10.29103/micoms.v3i.48

Iqbal, M., Ozaki, A. and Choi, Y. (2022) ‘Assessment of Indoor Thermal Comfort of Naturally Ventilated House in Tropical Region’, Journal of Architecture and Urban Design, Kyushu University, 45–53. https://doi.org/10.15017/6788786

Karyono, T. H. (2015) ‘Predicting comfort temperature in Indonesia, an initial step to reduce cooling energy consumption’, Buildings, 5(3), pp. 802–813. https://doi.org/10.3390/buildings5030802

Khatimah, H. et al. (2024) ‘Evaluasi Kenyamanan Termal Perpustakaan Wilayah Provinsi Aceh Evaluation of Thermal Comfort of the Regional Library of Aceh Province’, 8, 63–85. https://doi.org/10.24815/jimap.v8i3.30645

Kocik, Stanisław, Agnes Psikuta, and Joanna Ferdyn-Grygierek. (2024) “Influence of Window and Door Opening on Office Room Environment and Human Thermal Sensation during Different Seasons in Moderate Climate.” Building and Environment 259, 111669. https://doi.org/10.1016/j.buildenv.2024.111669

Lee, T. et al. (2024) ‘Indoor Air Temperature Distribution and Heat Transfer Coefficient for Evaluating Cold Storage of Phase-Change Materials during Night Ventilation’, Buildings, 14(6). https://doi.org/10.3390/buildings14061872

Mirrahimi, S. et al. (2016) ‘The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot-humid climate’, Renewable and Sustainable Energy Reviews, 53, 1508–1519. https://doi.org/10.1016/j.rser.2015.09.055

Santamouris, M. and Vasilakopoulou, K. (2021) ‘Present and future energy consumption of buildings: Challenges and opportunities towards decarbonisation’, e-Prime - Advances in Electrical Engineering, Electronics and Energy, 1, 100002. https://doi.org/10.1016/j.prime.2021.100002

Sari, L. H. et al. (2018) ‘A review of spatial comfort in shophouse in humid tropics’, IOP Conference Series: Materials Science and Engineering, 352(1). https://doi.org/10.1088/1757-899X/352/1/012066

Tong, S. et al. (2021) ‘Impact of facade design on indoor air temperatures and cooling loads in residential buildings in the tropical climate’, Energy & Buildings, 243(112), 110972. https://doi.org/10.1016/j.enbuild.2021.110972

Wu, Z. and Wagner, A. (2024) ‘Thermal comfort of students in naturally ventilated secondary schools in countryside of hot summer cold winter zone, China’, Energy and Buildings, 305(January), 113891. https://doi.org/10.1016/j.enbuild.2024.113891

Zain, Z. M., Taib, M. N. and Baki, S. M. S. (2007) ‘Hot and humid climate: prospect for thermal comfort in residential building’, Desalination, 209(1-3 SPEC. ISS.), 261–268. https://doi.org/10.1016/j.desal.2007.04.036

Published
2024-11-28
How to Cite
Iqbal, M., Atthaillah, A., Safyan, A., Indriani, L., & Sina, A. M. (2024). Kenyamanan Termal pada Bangunan Berventilasi Alami di Iklim Tropis. Nature: National Academic Journal of Architecture, 11(2), 152-163. https://doi.org/10.24252/nature.v11i2a3
Section
ARTICLES
Abstract viewed = 114 times