POLA SPASIAL PERUMAHAN SUBSIDI DI WILAYAH BODETABEK

  • Luwi Wahyu Adi University of Indonesia
    (ID)
  • Adi Wibowo Universitas Indonesia
    (ID)
Kata Kunci: perumahan subsidi, pola spasial, bodetabek

Abstrak

Perkembangan sebuah kota dan wilayah berhubungan dengan pembangunan perumahan. Faktor pemicunya adalah meningkatnya kebutuhan rumah akibat pertumbuhan penduduk. Pemerintah Indonesia telah melaksanakan kewajiban untuk memenuhi kebutuhan perumahan, salah satunya melalui subsidi perumahan. Namun demikian, sektor perumahan merupakan salah satu sektor yang kompleks karena melibatkan banyak pemangku kepentingan. Penyelesaian persoalan perumahan juga tidak mudah untuk dilakukan. Apalagi perumahan tersebut berada di wilayah dengan kepadatan penduduk tinggi dan merupakan penyangga ibukota seperti Bodetabek. Penelitian ini bertujuan untuk mengetahui seperti apa pola spasial perumahan subsidi di wilayah Bodetabek. Beberapa metode yang digunakan untuk mengetahui pola spasial perumahan subsidi adalah kernel density, density-base clustering dan analisis average nearest neighbor.

Hasil penelitian menunjukkan bahwa perumahan subsidi membentuk pola sebaran kepadatan di wilayah Bodetabek. Pola sebaran terbagi menjadi 5 kelas, yaitu sangat rendah, rendah, sedang, tinggi dan sangat tinggi. Secara umum, perumahan subsidi di Bodetabek termasuk dalam kategori mengelompok. Selain itu, perumahan subsidi terbagi menjadi 5 (lima) klaster besar. Klaster tersebut adalah Klaster Rajeg, Klaster Tigaraksa-Cisoka-Solear, Klaster Ciseeng-Ciampea-Kemang-Rancabungur, Klaster Cileungsi-Klapanunggal-Cibarusah-Serang Baru dan Klaster Cibitung-Karang Bahagia-Tambun Utara. Pola-pola tersebut dapat digunakan sebagai basis data perencanaan pembangunan di wilayah Bodetabek. Perencanaan pembangunan tersebut tentu disesuaikan dengan segmen penerima manfaat perumahan subsidi, yaitu masyarakat berpenghasilan rendah.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

Referensi

Agrawal, K.P., Garg, S., Sharma, S., Patel, P., 2016. Development and validation of OPTICS based spatio-temporal clustering technique. Inf Sci (N Y) 369, 388–401. https://doi.org/10.1016/j.ins.2016.06.048

Birant, D., Kut, A., 2007. ST-DBSCAN: An algorithm for clustering spatial–temporal data. Data Knowl Eng 60, 208–221. https://doi.org/10.1016/j.datak.2006.01.013

Bivand, R.S., Pebesma, E., Gómez-Rubio, V., 2013. Applied Spatial Data Analysis with R. Springer New York, New York, NY. https://doi.org/10.1007/978-1-4614-7618-4

Dhanaraj, K., Angadi, D.P., 2021. A GIS based interpretation of the historical evolution of urban settlements in Mangalore City, India. Spatial Information Research 29, 615–629. https://doi.org/10.1007/s41324-020-00363-5

Esri, 2023a. How Kernel Density works [WWW Document]. https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-kernel-density-works.htm.

Esri, 2023b. How Average Nearest Neighbor works [WWW Document]. https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-average-nearest-neighbor-distance-spatial-st.htm.

Gao, J., Zhang, Y., Li, X., 2016. Basic Characteristics and Spatial Patterns of Pseudo-Settlements—Taking Dalian as An Example. Int J Environ Res Public Health 13, 145. https://doi.org/10.3390/ijerph13010145

Heitz, A., Dablanc, L., Olsson, J., Sanchez-Diaz, I., Woxenius, J., 2020. Spatial patterns of logistics facilities in Gothenburg, Sweden. J Transp Geogr 88, 102191. https://doi.org/10.1016/j.jtrangeo.2018.03.005

Karim, M. Al, Utomo, G.J., Fauziah, B., 2019. Kualitas Hidup dan Pertumbuhan Ekonomi, Studi Kasus DKI Jakarta dan Daerah Penyangganya. JURNAL PEMBANGUNAN WILAYAH & KOTA 15. https://doi.org/10.14710/pwk.v15i3.22287

Lee, C., Lee, J., Park, S., 2023. Forecasting the urbanization dynamics in the Seoul metropolitan area using a long short-term memory–based model. Environ Plan B Urban Anal City Sci 50, 453–468. https://doi.org/10.1177/23998083221118002

Li, Z., Tong, Q., Wang, R., Tu, Q., Yan, M., Yu, J., 2017. Research on spatial differentiation and correlation analysis of residential land in Wuhan, in: 2017 25th International Conference on Geoinformatics. IEEE, pp. 1–5. https://doi.org/10.1109/GEOINFORMATICS.2017.8090935

McInnes, L., Healy, J., Astels, S., 2017. hdbscan: Hierarchical density based clustering. The Journal of Open Source Software 2, 205. https://doi.org/10.21105/joss.00205

Ministry of Public Work and Housing, 2020. Strategic Plan of the Directorate General of Infrastructure Financing for Public Works and Public Housing 2020-2024. Jakarta.

Ministry of Public Work and Housing - HREIS Team, 2021. Indonesia Housing Profile Report 2021. Jakarta.

Prasetyo, A., 2017. Pola Spasial Penjalaran Perkotaan Bodetabek: Studi Aplikasi Model Shannon’s Entropy. Jurnal Geografi Gea 16, 144. https://doi.org/10.17509/gea.v16i2.2439

Ramadhan, G.F., Hidayati, I.N., 2022. Prediction and Simulation of Land Use and Land Cover Changes Using Open Source QGIS. A Case Study of Purwokerto, Central Java, Indonesia. Indonesian Journal of Geography 54. https://doi.org/10.22146/ijg.68702

Sen, Z., 2016. Spatial Modeling Principles in Earth Sciences. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-41758-5

Thompson, A.E., Walden, J.P., Chase, A.S.Z., Hutson, S.R., Marken, D.B., Cap, B., Fries, E.C., Guzman Piedrasanta, M.R., Hare, T.S., Horn, S.W., Micheletti, G.J., Montgomery, S.M., Munson, J., Richards-Rissetto, H., Shaw-Müller, K., Ardren, T., Awe, J.J., Brown, M.K., Callaghan, M., Ebert, C.E., Ford, A., Guerra, R.A., Hoggarth, J.A., Kovacevich, B., Morris, J.M., Moyes, H., Powis, T.G., Yaeger, J., Houk, B.A., Prufer, K.M., Chase, A.F., Chase, D.Z., 2022. Ancient Lowland Maya neighborhoods: Average Nearest Neighbor analysis and kernel density models, environments, and urban scale. PLoS One 17, e0275916. https://doi.org/10.1371/journal.pone.0275916

Vardopoulos, I., Ioannides, S., Georgiou, M., Voukkali, I., Salvati, L., Doukas, Y.E., 2023. Shaping Sustainable Cities: A Long-Term GIS-Emanated Spatial Analysis of Settlement Growth and Planning in a Coastal Mediterranean European City. Sustainability 15, 11202. https://doi.org/10.3390/su151411202

Yan, L., Yang, R., Lu, P., Teng, F., Wang, X., Zhang, L., Chen, P., Li, X., Guo, L., Zhao, D., 2021. The spatiotemporal evolution of ancient cities from the late Yangshao to Xia and Shang Dynasties in the Central Plains, China. Herit Sci 9, 124. https://doi.org/10.1186/s40494-021-00580-7

Zhang, Z., Xiao, R., Shortridge, A., Wu, J., 2014. Spatial Point Pattern Analysis of Human Settlements and Geographical Associations in Eastern Coastal China — A Case Study. Int J Environ Res Public Health 11, 2818–2833. https://doi.org/10.3390/ijerph110302818

Diterbitkan
2024-10-16
Bagian
ARTICLES
Abstrak viewed = 186 times