Antioxidant Activity of Zerumbone and Its Pharmacological Prospects in Oxidative Stress Conditions: A Narrative Review

  • Haeria Doloking Universitas Hasanuddin Makassar
    (ID)
  • Subehan Lallo Universitas Hasanuddin Makassar
    (ID)
  • Marianti A Manggau Universitas Hasanuddin Makassar
    (ID)
  • Yusnita Rifai Universitas Hasanuddin Makassar
    (ID)
Keywords: Zerumbone, antioxidant, antiinflammation, oxidative stress, and narrative review

Abstract

Introdiction: Oxidative stress is a condition caused by an imbalance between the level of oxidants in cells and tissues and the ability of the biological system to detoxify these reactive products. To compensate for the excess oxidant molecules, the human body requires the intake of antioxidant compounds through diet or medicinal plants to overcome the deficiency of these endogenous antioxidants.  Zerumbone is the main bioactive compound of the Zingiber zerumbet L. Smith rhizome that was reported to have antioxidant activity and different pharmacological effects, like anti-inflammatory, anti-cancer, antidiabetic, immunomodulatory, anti-neurodegenerative disease, hepatoprotective, and gastroprotective. Aims: This review aims to gather available scientific research data regarding the antioxidant activity of zerumbone and its pharmacological prospects under conditions of oxidative stress. This paper is an overview of previous research on the various pharmacological activities of zerumbone and studies of its mechanism of action related to oxidative stress at the molecular level. The selected articles are related research reports for the 2010–2022 period, which can be accessed online through NCBI, Science Direct, MDPI, and Google Scholar. Result: The research results mentioned in this review paper can summarize knowledge to explain the pharmacological potential of zerumbone so that it can be used as a starting point or comparison in designing further research. Conclusion: The results of the reviews show that the various pharmacological prospects of zerumbone are related to oxidative stress conditions through various modes of action.

Downloads

Download data is not yet available.

Author Biographies

Subehan Lallo, Universitas Hasanuddin Makassar

 

 

Marianti A Manggau, Universitas Hasanuddin Makassar

 

 

Yusnita Rifai, Universitas Hasanuddin Makassar

 

 

References

Abdelwahab, S. I., Abdul, A. B., Mohan, S., Taha, M. M. E., Syam, S., Ibrahim, M. Y., & Mariod, A. A. (2011). Zerumbone induces apoptosis in T-acute lymphoblastic leukemia cells. Leukemia Research, 35(2), 268–271. https://doi.org/10.1016/J.LEUKRES.2010.07.025
Abdelwahab, S. I., Abdul, A. B., Zain, Z. N. M., & Hadi, A. H. A. (2012). Zerumbone inhibits interleukin-6 and induces apoptosis and cell cycle arrest in ovarian and cervical cancer cells. International Immunopharmacology, 12(4), 594–602. https://doi.org/10.1016/J.INTIMP.2012.01.014
Ajish, K. R., Dhanya, B. P., Joseph, N., Rani, M. P., Raghu, K. G., Vineetha, V. P., & Radhakrishnan, K. V. (2014). Synthesis of novel zerumbone derivatives via regioselective palladium catalyzed decarboxylative coupling reaction : a new class of a -glucosidase inhibitors. Tetrahedron Letters, 55(3), 665–670. https://doi.org/10.1016/j.tetlet.2013.11.110
Akhtar, N. M. Y., Jantan, I., Arshad, L., & Haque, M. A. (2019). Standardized ethanol extract, essential oil and zerumbone of Zingiber zerumbet rhizome suppress phagocytic activity of human neutrophils. BMC Complementary and Alternative Medicine, 19(1), 331. https://doi.org/10.1186/S12906-019-2748-5
Al-Saffar, Ganabadi, S., Fakurazi, S., & Yaakub, H. (2011). Zerumbone significantly improved immunoreactivity in the synovium compared to Channa striatus extract in monosodium iodoacetate (MIA)-induced knee osteoarthritis in rat. Journal of Medicinal Plants Research, 5(9), 1701–1710. http://www.academicjournals.org/JMPR
Ali, S. S., Ahsan, H., Zia, M. K., Siddiqui, T., & Khan, F. H. (2020). Understanding oxidants and antioxidants: Classical team with new players. Journal of Food Biochemistry, 44(3), 1–13. https://doi.org/10.1111/jfbc.13145
Arulselvan, P., Fard, M. T., Tan, W. S., Gothai, S., Fakurazi, S., Norhaizan, M. E., & Kumar, S. S. (2016). Role of Antioxidants and Natural Products in Inflammation. Oxidative Medicine and Cellular Longevity, 2016. https://doi.org/10.1155/2016/5276130
Ashraf, S. M., Sebastian, J., & Rathinasamy, K. (2019). Zerumbone, a cyclic sesquiterpene, exerts antimitotic activity in HeLa cells through tubulin binding and exhibits synergistic activity with vinblastine and paclitaxel. Cell Proliferation, 52(2). https://doi.org/10.1111/CPR.12558
Aziz, R. S., Siddiqua, A., Shahzad, M., Shabbir, A., & Naseem, N. (2019). Oxyresveratrol ameliorates ethanol-induced gastric ulcer via downregulation of IL-6, TNF-α NF-ĸB, and COX-2 levels, and upregulation of TFF-2 levels. Biomedicine and Pharmacotherapy, 110(November 2018), 554–560. https://doi.org/10.1016/j.biopha.2018.12.002
Behl, P., Edwards, J. D., Kiss, A., Lanctot, K. L., Streiner, D. L., Black, S. E., & Stuss, D. T. (2014). Treatment effects in multiple cognitive domains in Alzheimer’s disease: a two-year cohort study. Alzheimer’s Research & Therapy, 6(4), 48. https://doi.org/10.1186/ALZRT280
Behl, T., Kumar, K., Brisc, C., Rus, M., Nistor-Cseppento, D. C., Bustea, C., Aron, R. A. C., Pantis, C., Zengin, G., Sehgal, A., Kaur, R., Kumar, A., Arora, S., Setia, D., Chandel, D., & Bungau, S. (2021). Exploring the multifocal role of phytochemicals as immunomodulators. Biomedicine and Pharmacotherapy, 133(November 2020), 110959. https://doi.org/10.1016/j.biopha.2020.110959
Bhattacharyya, A., Chattopadhyay, R., Mitra, S., & Crowe, S. E. (2014). Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiological Reviews, 94(2), 329–354. https://doi.org/10.1152/physrev.00040.2012
Bilitewski, U. (2008). Determination of immunomodulatory effects : focus on functional analysis of phagocytes as representatives of the innate immune system. Anal Bioanal Chem, 1545–1554. https://doi.org/10.1007/s00216-008-2089-6
Chen, B.-Y., Lin, D. P.-C., Su, K.-C., Chen, Y.-L., Wu, C.-Y., Teng, M.-C., Tsai, Y.-T., Sun, C.-Y., Wang, S.-R., & Chang, H.-H. (2011). Dietary zerumbone prevents against ultraviolet B-induced cataractogenesis in the mouse. Molecular Vision, 17, 723. /pmc/articles/PMC3060159/
Chia, J. S. M., Izham, N. A. M., Farouk, A. A. O., Sulaiman, M. R., Mustafa, S., Hutchinson, M. R., & Perimal, E. K. (2020). Zerumbone Modulates α2A-Adrenergic, TRPV1, and NMDA NR2B Receptors Plasticity in CCI-Induced Neuropathic Pain In Vivo and LPS-Induced SH-SY5Y Neuroblastoma In Vitro Models. In Frontiers in Pharmacology (Vol. 11). https://doi.org/10.3389/fphar.2020.00092
Chia, J. S. M., Omar Farouk, A. A., Mohamad, A. S., Sulaiman, M. R., & Perimal, E. K. (2016). Zerumbone alleviates chronic constriction injury-induced allodynia and hyperalgesia through serotonin 5-HT receptors. Biomedicine and Pharmacotherapy, 83, 1303–1310. https://doi.org/10.1016/j.biopha.2016.08.052
Chien, T.-Y., Huang, S. K.-H., Lee, C.-J., Tsai, P.-W., & Wang, C.-C. (2016). Antinociceptive and Anti-Inflammatory Effects of Zerumbone against Mono-Iodoacetate-Induced Arthritis. International Journal of Molecular Sciences, 17(2), 249. https://doi.org/10.3390/IJMS17020249
Dai, C., Xiao, X., Li, D., Tun, S., Wang, Y., Velkov, T., & Tang, S. (2018). Chloroquine ameliorates carbon tetrachloride-induced acute liver injury in mice via the concomitant inhibition of inflammation and induction of apoptosis. Cell Death and Disease, 9(12). https://doi.org/10.1038/s41419-018-1136-2
Deorukhkar, A., Ahuja, N., Mercado, A.-L., Diagaradjane, P., Raju, U., Patel, N., Mohindra, P., Diep, N., Guha, S., & Krishnan, S. (2015). Zerumbone increases oxidative stress in a thiol-dependent ROS-independent manner to increase DNA damage and sensitize colorectal cancer cells to radiation. Cancer Medicine, 4(2), 278. https://doi.org/10.1002/CAM4.367
Dev, S. (1960). Studies in sesquiterpenes—XVI : Zerumbone, a monocyclic sesquiterpene ketone. Tetrahedron, 8(3–4), 171–180. https://doi.org/10.1016/0040-4020(60)80027-0
Dev, S., Anderson, J. E., Cormier, V., Damodaran, N. P., & Roberts, J. D. (2002). Nuclear magnetic resonance spectroscopy. The conformational mobility of humulene and zerumbone. Journal of the American Chemical Society, 90(5), 1246–1248. https://doi.org/10.1021/JA01007A024
Duronio, R. J., & Xiong, Y. (2013). Signaling Pathways that Control Cell Proliferation. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a008904
Eid, E. E. M., Alanazi, A. S., Koosha, S., Alrasheedy, A. A., Azam, F., Taban, I. M., Khalilullah, H., Al-Qubaisi, M. S., & Alshawsh, M. A. (2019). Zerumbone Induces Apoptosis in Breast Cancer Cells by Targeting αvβ3 Integrin upon Co-Administration with TP5-iRGD Peptide. Molecules, 24(14). https://doi.org/10.3390/MOLECULES24142554
Esquivel-Chirino, C., Esquivel-Soto, J., Morales-Gonzales, J. A., Sanches, D. M., Ventura-Gallegos, J. L., Hernandes-Mora, L. E., & Zentella-Dehesa, A. (2016). Inflammatory Environmental, Oxidative Stress in Tumoral Progression. Intech, i(tourism), 13.
García-Sánchez, A., Miranda-Díaz, A. G., & Cardona-Muñoz, E. G. (2020). The Role of Oxidative Stress in Physiopathology and Pharmacological Treatment with Pro- And Antioxidant Properties in Chronic Diseases. Oxidative Medicine and Cellular Longevity, 2020. https://doi.org/10.1155/2020/2082145
Girisa, S., Shabnam, B., Monisha, J., Fan, L., Halim, C. E., Arfuso, F., Ahn, K. S., Sethi, G., & Kunnumakkara, A. B. (2019). molecules Potential of Zerumbone as an Anti-Cancer Agent. https://doi.org/10.3390/molecules24040734
Gopalsamy, B., Chia, J. S. M., Farouk, A. A. O., Sulaiman, M. R., & Perimal, E. K. (2020). Zerumbone-Induced Analgesia Modulated via Potassium Channels and Opioid Receptors in Chronic Constriction Injury-Induced Neuropathic Pain. Molecules, 25(17), 3880. https://doi.org/10.3390/MOLECULES25173880
Gopalsamy, B., Farouk, A. A. O., Mohamad, T. A. S. T., Sulaiman, M. R., & Perimal, E. K. (2017). Antiallodynic and antihyperalgesic activities of zerumbone via the suppression of IL-1β, IL-6, and TNF-α in a mouse model of neuropathic pain. Journal of Pain Research, 10, 2605. https://doi.org/10.2147/JPR.S143024
Hamid, A., Lee, L. S., Karim, S. R., & Jufri, N. F. (2018). Hepatoprotective Effects of Zerumbone against Paracetamol-Induced Acute Hepatotoxicity in Rats. Malays J Med Sci.
He, L., He, T., Farrar, S., Ji, L., Liu, T., & Ma, X. (2017). Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cellular Physiology and Biochemistry, 44(2), 532–553. https://doi.org/10.1159/000485089
Hemn, H. O., Noordin, M. M., Rahman, H. S., Hazilawati, H., Zuki, A., & Chartrand, M. S. (2015). Antihypercholesterolemic and antioxidant efficacies of zerumbone on the formation, development, and establishment of atherosclerosis in cholesterol-fed rabbits. Drug Design, Development and Therapy, 9, 4173. https://doi.org/10.2147/DDDT.S76225
Heneka, M. T., Carson, M. J., Khoury, J. El, Landreth, G. E., Brosseron, F., Feinstein, D. L., Jacobs, A. H., Wyss-Coray, T., Vitorica, J., Ransohoff, R. M., Herrup, K., Frautschy, S. A., Finsen, B., Brown, G. C., Verkhratsky, A., Yamanaka, K., Koistinaho, J., Latz, E., Halle, A., … Kummer, M. P. (2015). Neuroinflammation in Alzheimer’s Disease. The Lancet. Neurology, 14(4), 388. https://doi.org/10.1016/S1474-4422(15)70016-5
Hensley, K. (2010). Neuroinflammation in Alzheimer’s disease: Mechanisms, pathologic consequences, and potential for therapeutic manipulation. Journal of Alzheimer’s Disease, 21(1), 1–14. https://doi.org/10.3233/JAD-2010-1414
Hinson, J. A., Roberts, D. W., & James, L. P. (2010). Mechanisms of Acetaminophen-Induced Liver Necrosis. Handbook of Experimental Pharmacology, 196(196), 369. https://doi.org/10.1007/978-3-642-00663-0_12
Ho, Y. C., Lee, S. S., Yang, M. L., Huang-Liu, R., Lee, C. Y., Li, Y. C., & Kuan, Y. H. (2017). Zerumbone reduced the inflammatory response of acute lung injury in endotoxin-treated mice via Akt-NFκB pathway. Chemico-Biological Interactions, 271, 9–14. https://doi.org/10.1016/j.cbi.2017.04.017
Hseu, Y. C., Huang, Y. C., Korivi, M., Wu, J. J., Way, T. Der, Ou, T. T., Chiu, L. W., Lee, C. C., Lin, M. L., & Yang, H. L. (2015). Zerumbone attenuates TGF-β1-mediated epithelial–mesenchymal transition via upregulated E-cadherin expression and downregulated Smad2 signalling pathways in non-small cell lung cancer (A549) cells. Journal of Functional Foods, 18, 58–72. https://doi.org/10.1016/J.JFF.2015.06.058
Hussain, T., Tan, B., Yin, Y., Blachier, F., Tossou, M. C. B., & Rahu, N. (2016). Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxidative Medicine and Cellular Longevity, 2016. https://doi.org/10.1155/2016/7432797
Hwang, J., Youn, K., Ji, Y., Lee, S., Lim, G., Lee, J., Ho, C.-T., Leem, S.-H., & Jun, M. (2020). Biological and Computational Studies for Dual Cholinesterases Inhibitory Effect of Zerumbone. Nutrients, 12(5). https://doi.org/10.3390/NU12051215
Hwang, S., Jo, M., Hong, J. E., Park, C. O., Lee, C. G., Yun, M., & Rhee, K.-J. (2019). Zerumbone Suppresses Enterotoxigenic Bacteroides fragilis Infection-Induced Colonic Inflammation through Inhibition of NF-κΒ. International Journal of Molecular Sciences, 20(18). https://doi.org/10.3390/IJMS20184560
Ilari, S., Giancotti, L. A., Lauro, F., Dagostino, C., Gliozzi, M., Malafoglia, V., Sansone, L., Palma, E., Tafani, M., Russo, M. A., Tomino, C., Fini, M., Salvemini, D., Mollace, V., & Muscoli, C. (2020). Antioxidant modulation of sirtuin 3 during acute inflammatory pain: The ROS control. Pharmacological Research, 157(May). https://doi.org/10.1016/j.phrs.2020.104851
Ilari, S., Giancotti, L. A., Lauro, F., Gliozzi, M., Malafoglia, V., Palma, E., Tafani, M., Russo, M. A., Tomino, C., Fini, M., Salvemini, D., Mollace, V., & Muscoli, C. (2020). Natural antioxidant control of neuropathic pain— exploring the role of mitochondrial sirt3 pathway. Antioxidants, 9(11), 1–19. https://doi.org/10.3390/antiox9111103
Jaeschke, H., & Bajt, M. L. (2006). Intracellular signaling mechanisms of acetaminophen-induced liver cell death. Toxicological Sciences, 89(1), 31–41. https://doi.org/10.1093/toxsci/kfi336
Jafariana, S., Ling, K.-H., Hassan, Z., Perimal-Lewis, L., Sulaiman, M. R., & Perimala, E. K. (2019). Effect of zerumbone on scopolamine-induced memory impairment and anxiety-like behaviours in rats. Alzheimer’s & Dementia (New York, N. Y.), 5, 637–643. https://doi.org/10.1016/J.TRCI.2019.09.009
Jalili-Nik, M., Sadeghi, M. M., Mohtashami, E., Mollazadeh, H., Afshari, A. R., & Sahebkar, A. (2020). Zerumbone Promotes Cytotoxicity in Human Malignant Glioblastoma Cells through Reactive Oxygen Species (ROS) Generation. Oxidative Medicine and Cellular Longevity, 2020. https://doi.org/10.1155/2020/3237983
Jantan, I., Haque, M. A., Ilangkovan, M., & Arshad, L. (2019). Zerumbone from Zingiber zerumbet inhibits innate and adaptive immune responses in Balb/C mice. International Immunopharmacology, 73, 552–559. https://doi.org/10.1016/J.INTIMP.2019.05.035
Jeon, M., Han, J., Nam, S. J., Lee, J. E., & Kim, S. (2016). Elevated IL-1β expression induces invasiveness of triple negative breast cancer cells and is suppressed by zerumbone. Chemico-Biological Interactions, 258, 126–133. https://doi.org/10.1016/J.CBI.2016.08.021
Jiang, D., Rasul, A., Batool, R., Sarfraz, I., Hussain, G., Mateen Tahir, M., Qin, T., Selamoglu, Z., Ali, M., Li, J., & Li, X. (2019). Potential Anticancer Properties and Mechanisms of Action of Formononetin. BioMed Research International, 2019. https://doi.org/10.1155/2019/5854315
Jorvig, J. E., & Chakraborty, A. (2015). Zerumbone inhibits growth of hormone refractory prostate cancer cells by inhibiting JAK2/STAT3 pathway and increases paclitaxel sensitivity. Anti-Cancer Drugs, 26(2), 160–166. https://doi.org/10.1097/CAD.0000000000000171
Kabeer, F. A., Rajalekshmi, D. S., Nair, M. S., & Prathapan, R. (2017). Molecular mechanisms of anticancer activity of deoxyelephantopin in cancer cells. Integrative Medicine Research, 6(2), 190. https://doi.org/10.1016/J.IMR.2017.03.004
Kalantari, K., Moniri, M., Moghaddam, A. B., Rahim, R. A., Ariff, A. Bin, Izadiyan, Z., & Mohamad, R. (2017). A Review of the Biomedical Applications of Zerumbone and the Techniques for Its Extraction from Ginger Rhizomes. Molecules 2017, Vol. 22, Page 1645, 22(10), 1645. https://doi.org/10.3390/MOLECULES22101645
Kim, S., Lee, J., Jeon, M., Lee, J. E., & Nam, S. J. (2016). Zerumbone suppresses the motility and tumorigenecity of triple negative breast cancer cells via the inhibition of TGF-β1 signaling pathway. Oncotarget, 7(2), 1544. https://doi.org/10.18632/ONCOTARGET.6441
Klein, W. L., Stine, W. B., & Teplow, D. B. (2004). Small assemblies of unmodified amyloid β-protein are the proximate neurotoxin in Alzheimer’s disease. Neurobiology of Aging, 25(5), 569–580. https://doi.org/10.1016/j.neurobiolaging.2004.02.010
Leung, W. S., Yang, M. L., Lee, S. S., Kuo, C. W., Ho, Y. C., Huang-Liu, R., Lin, H. W., & Kuan, Y. H. (2017). Protective effect of zerumbone reduces lipopolysaccharide-induced acute lung injury via antioxidative enzymes and Nrf2/HO-1 pathway. International Immunopharmacology, 46, 194–200. https://doi.org/10.1016/J.INTIMP.2017.03.008
Li, Lei, Wu, X.-H., Zhao, X.-J., Xu, L., Pan, C.-L., & Zhang, Z.-Y. (2020). Zerumbone ameliorates behavioral impairments and neuropathology in transgenic APP/PS1 mice by suppressing MAPK signaling. Journal of Neuroinflammation, 17(1). https://doi.org/10.1186/S12974-020-01744-1
Li, Liqing, Kong, L., & Song, H. (2017). The therapeutic effect of zerumbone on chronic gastritis via antioxidant mechanisms. Experimental and Therapeutic Medicine, 14(3), 2505–2510. https://doi.org/10.3892/etm.2017.4795
Lingappan, K. (2017). NF-κB in Oxidative Stress. Curr Opin Toxicol., 7, 81–86. https://doi.org/10.1016/j.cotox.2017.11.002.NF-
Liu, W. Y., Tzeng, T. F., & Liu, I. M. (2016). Zerumbone, a bioactive sesquiterpene, ameliorates diabetes-induced retinal microvascular damage through inhibition of phospho-p38 mitogen-activated protein kinase and nuclear factor-κB pathways. Molecules, 21(12). https://doi.org/10.3390/molecules21121708
Long, J. M., & Holtzman, D. M. (2019). Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell, 179(2), 312. https://doi.org/10.1016/J.CELL.2019.09.001
Lv, T., Zhang, W., & Han, X. (2018). Zerumbone suppresses the potential of growth and metastasis in hepatoma HepG2 cells via the MAPK signaling pathway. Oncology Letters, 15(5), 7603. https://doi.org/10.3892/OL.2018.8335
Ma, S., Lei, Y., Zhang, L., & Wang, J. (2018). Effects of zerumbone on proliferation and apoptosis of esophageal cancer cells and on P53 and Bcl-2 expression levels. Oncology Letters, 16(4), 4379. https://doi.org/10.3892/OL.2018.9184
Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P., & Malik, A. B. (2014). Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxidants & Redox Signaling, 20(7), 1126. https://doi.org/10.1089/ARS.2012.5149
Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity, 2017. https://doi.org/10.1155/2017/8416763
Rahman, H. S., Rasedee, A., How, C. W., Zeenathul, N. A., Chartrand, M. S., Yeap, S. K., Abdul, A. B., Tan, S. W., Othman, H. H., Ajdari, Z., Namvar, F., Arulselvan, P., Fakurazi, S., Mehrbod, P., Daneshvar, N., & Begum, H. (2015). Antileukemic effect of zerumbone-loaded nanostructured lipid carrier in WEHI-3B cell-induced murine leukemia model. International Journal of Nanomedicine, 10, 1649. https://doi.org/10.2147/IJN.S67113
Rahman, H. S., Rasedee, A., Yeap, S. K., Othman, H. H., Chartrand, M. S., Namvar, F., Abdul, A. B., & How, C. W. (2014). Biomedical properties of a natural dietary plant metabolite, Zerumbone, in cancer therapy and chemoprevention trials. BioMed Research International, 2014. https://doi.org/10.1155/2014/920742
Reid, G. A., Chilukuri, N., & Darvesh, S. (2013). Butyrylcholinesterase and the cholinergic system. Neuroscience, 234, 53–68. https://doi.org/10.1016/J.NEUROSCIENCE.2012.12.054
Reyes-Gordillo, K., Shah, R., & Muriel, P. (2017). Oxidative Stress and Inflammation in Hepatic Diseases: Current and Future Therapy. Oxidative Medicine and Cellular Longevity, 2017(ii). https://doi.org/10.1155/2017/3140673
Safakhah, H. A., Kor, N. M., Bazargani, A., Bandegi, A. R., Pourbadie, H. G., Khoshkholgh-Sima, B., & Ghanbari, A. (2017). Forced exercise attenuates neuropathic pain in chronic constriction injury of male rat: An investigation of oxidative stress and inflammation. Journal of Pain Research, 10, 1457–1466. https://doi.org/10.2147/JPR.S135081
Salehi, B., Ata, A., Kumar, N. V. A., Sharopov, F., Ramírez-Alarcón, K., Ruiz-Ortega, A., Ayatollahi, S. A., Fokou, P. V. T., Kobarfard, F., Zakaria, Z. A., Iriti, M., Taheri, Y., Martorell, M., Sureda, A., Setzer, W. N., Durazzo, A., Lucarini, M., Santini, A., Capasso, R., … Sharifi-Rad, J. (2019). Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules, 9(10). https://doi.org/10.3390/BIOM9100551
Samad, N. A., Abdul, A. B., Rahman, H. S., Rasedee, A., Ibrahim, T. A. T., & Keon, Y. S. (2017). Zerumbone Suppresses Angiogenesis in HepG2 Cells through Inhibition of Matrix Metalloproteinase-9, Vascular Endothelial Growth Factor, and Vascular Endothelial Growth Factor Receptor Expressions. Pharmacognosy Magazine, 13 (Suppl(62), 179–188. https://doi.org/10.4103/pm.pm
Sehrawat, A., Arlotti, J. A., Murakami, A., & Singh, S. V. (2012). Zerumbone causes Bax and Bak-mediated apoptosis in human breast cancer cells and inhibits orthotopic xenograft growth in vivo. Breast Cancer Research and Treatment, 136(2), 429. https://doi.org/10.1007/S10549-012-2280-5
Serrano-Pozo, A., Frosch, M. P., Masliah, E., & Hyman, B. T. (2011). Neuropathological alterations in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 1(1). https://doi.org/10.1101/cshperspect.a006189
Shamoto, T., Matsuo, Y., Shibata, T., Tsuboi, K., Nagasaki, T., Takahashi, H., Funahashi, H., Okada, Y., & Takeyama, H. (2014). Zerumbone inhibits angiogenesis by blocking NF-κB activity in pancreatic cancer. Pancreas, 43(3), 396–404. https://doi.org/10.1097/MPA.0000000000000039
Shams, S. G. E., & Eissa, R. G. (2022). Amelioration of ethanol-induced gastric ulcer in rats by quercetin: implication of Nrf2/HO1 and HMGB1/TLR4/NF-κB pathways. Heliyon, 8(10), e11159. https://doi.org/10.1016/j.heliyon.2022.e11159
Shoaib, M., Shah, I., Ali, N., Adhikari, A., Tahir, M. N., Shah, S. W. A., Ishtiaq, S., Khan, J., Khan, S., & Umer, M. N. (2017). Sesquiterpene lactone! a promising antioxidant, anticancer and moderate antinociceptive agent from Artemisia macrocephala jacquem. BMC Complementary and Alternative Medicine, 17(1), 1–11. https://doi.org/10.1186/s12906-016-1517-y
Shyanti, R. K., Sehrawat, A., Singh, S. V., Mishra, J. P. N., & Singh, R. P. (2017). Zerumbone modulates CD1d expression and lipid antigen presentation pathway in breast cancer cells. Toxicology in Vitro, 44, 74–84. https://doi.org/10.1016/J.TIV.2017.06.016
Sidahmed, H. M. A., Hashim, N. M., Abdulla, M. A., Ali, H. M., Mohan, S., Abdelwahab, S. I., Taha, M. M. E., Fai, L. M., & Vadivelu, J. (2015). Antisecretory, Gastroprotective, Antioxidant and Anti-Helicobcter Pylori Activity of Zerumbone from Zingiber Zerumbet (L.) Smith. PLoS ONE, 10(3). https://doi.org/10.1371/JOURNAL.PONE.0121060
Su, C. C., Wang, S. C., Chen, I. C., Chiu, F. Y., Liu, P. L., Huang, C. H., Huang, K. H., Fang, S. H., Cheng, W. C., Huang, S. P., Yeh, H. C., Liu, C. C., Lee, P. Y., Huang, M. Y., & Li, C. Y. (2021). Zerumbone Suppresses the LPS-Induced Inflammatory Response and Represses Activation of the NLRP3 Inflammasome in Macrophages. Frontiers in Pharmacology, 12(May), 1–12. https://doi.org/10.3389/fphar.2021.652860
Sulaiman, M. R., Perimal, E. K., Akhtar, M. N., Mohamad, A. S., Khalid, M. H., Tasrip, N. A., Mokhtar, F., Zakaria, Z. A., Lajis, N. H., & Israf, D. A. (2010). Anti-inflammatory effect of zerumbone on acute and chronic inflammation models in mice. Fitoterapia, 81(7), 855–858. https://doi.org/10.1016/j.fitote.2010.05.009
Suzuki, H., Nishizawa, T., Tsugawa, H., Mogami, S., & Hibi, T. (2012). Oxidative Stress in Stomach Disorders. J. Clin. Biochem. Nutr., 50(1), 35–39. https://doi.org/10.1016/B978-0-12-819547-5.00005-5
Truong, V. Van, Duy, T., Ngoc, T., Thi, N., & Minh, P. (2015). Synthesis and Anti-proliferative Activity of Novel Azazerumbone Conjugates with Chalcones Bioorganic & Medicinal Chemistry Letters Synthesis and anti-proliferative activity of novel azazerumbone conjugates with chalcones. Bioorganic & Medicinal Chemistry Letters, 25(22), 5182–5185. https://doi.org/10.1016/j.bmcl.2015.09.069
Truong, V. Van, Nam, T. D., Hung, T. N., Nga, N. T., Quan, P. M., Chinh, L. Van, & Jung, S. H. (2015). Synthesis and anti-proliferative activity of novel azazerumbone conjugates with chalcones. Bioorganic and Medicinal Chemistry Letters, 25(22), 5182–5185. https://doi.org/10.1016/j.bmcl.2015.09.069
Tsuboi, K., Matsuo, Y., Shamoto, T., Shibata, T., Koide, S., Morimoto, M., Guha, S., Sung, B., Aggarwal, B. B., Takahashi, H., & Takeyama, H. (2014). Zerumbone inhibits tumor angiogenesis via NF-κB in gastric cancer. Oncology Reports, 31(1), 57–64. https://doi.org/10.3892/OR.2013.2842
Tzeng, T.-F., Liou, S.-S., Chang, C. J., & Liu, I.-M. (2013a). Zerumbone, a Natural Cyclic Sesquiterpene of Zingiber zerumbet Smith, Attenuates Nonalcoholic Fatty Liver Disease in Hamsters Fed on High-Fat Diet. Evidence-Based Complementary and Alternative Medicine : ECAM, 2013. https://doi.org/10.1155/2013/303061
Tzeng, T.-F., Liou, S.-S., Chang, C. J., & Liu, I.-M. (2013b). Zerumbone, a tropical ginger sesquiterpene, ameliorates streptozotocin-induced diabetic nephropathy in rats by reducing the hyperglycemia-induced inflammatory response. Nutrition & Metabolism, 10(1), 64. https://doi.org/10.1186/1743-7075-10-64
Tzeng, T.-F., Liou, S.-S., Tzeng, Y.-C., & Liu, I.-M. (2016). Zerumbone, a Phytochemical of Subtropical Ginger, Protects against Hyperglycemia-Induced Retinal Damage in Experimental Diabetic Rats. Nutrients, 8(8). https://doi.org/10.3390/NU8080449
Vigneron, A., & Vousden, K. H. (2010). p53, ROS and senescence in the control of aging. Aging (Albany NY), 2(8), 471. https://doi.org/10.18632/AGING.100189
Wang, C., Zou, S., Cui, Z., Guo, P., Meng, Q., Shi, X., Gao, Y., Yang, G., & Han, Z. (2015). Zerumbone protects INS-1 rat pancreatic beta cells from high glucose-induced apoptosis through generation of reactive oxygen species. Biochemical and Biophysical Research Communications, 460(2), 205–209. https://doi.org/10.1016/j.bbrc.2015.03.009
Wang, D., Li, Y., Cui, P., Zhao, Q., Tan, B. bo, Zhang, Z. dong, Liu, Y., & Jia, N. (2016). Zerumbone induces gastric cancer cells apoptosis: Involving cyclophilin A. Biomedicine & Pharmacotherapy, 83, 740–745. https://doi.org/10.1016/J.BIOPHA.2016.07.034
Wang, M., Niu, J., Gao, L., Gao, Y., & Gao, S. (2019). Zerumbone inhibits migration in ESCC via promoting Rac1 ubiquitination. Biomedicine & Pharmacotherapy, 109, 2447–2455. https://doi.org/10.1016/J.BIOPHA.2018.11.134
Wang, M., Niu, J., Ou, L., Deng, B., Wang, Y., & Li, S. (2019). Zerumbone Protects against Carbon Tetrachloride (CCl4)-Induced Acute Liver Injury in Mice via Inhibiting Oxidative Stress and the Inflammatory Response: Involving the TLR4/NF-κB/COX-2 Pathway. Molecules, 24(10). https://doi.org/10.3390/MOLECULES24101964
Weng, H. Y., Hsu, M. J., Wang, C. C., Chen, B. C., Hong, C. Y., Chen, M. C., Chiu, W. T., & Lin, C. H. (2012). Zerumbone suppresses IKKα, Akt, and FOXO1 activation, resulting in apoptosis of GBM 8401 cells. Journal of Biomedical Science, 19(1), 1–11. https://doi.org/10.1186/1423-0127-19-86
Wenhong, D., Jia, Y., Weixing, W., Xiaoyan, C., Chen, C., Sheng, X., & Hao, J. (2012). Zerumbone Attenuates the Severity of Acute Necrotizing Pancreatitis and Pancreatitis-Induced Hepatic Injury. Mediators of Inflammation, 2012, 12. https://doi.org/10.1155/2012/156507
Xu, D.-P., Li, Y., Meng, X., Zhou, T., Zhou, Y., Zheng, J., Zhang, J. J., & Li, H. Bin. (2017). Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. International Journal of Molecular Sciences, 18(1), 20–31. https://doi.org/10.3390/ijms18010096
Xu, M., Rui, D., Yan, Y., Xu, S., Niu, Q., Feng, G., Wang, Y., Li, S., & Jing, M. (2017). Oxidative Damage Induced by Arsenic in Mice or Rats: A Systematic Review and Meta-Analysis. Biological Trace Element Research, 176(1), 154–175. https://doi.org/10.1007/S12011-016-0810-4
Yan, H., Ren, M. Y., Wang, Z. X., Feng, S. J., Li, S. I., Cheng, Y. I., Hu, C. X., Gao, S. Q., & Zhang, G. Q. (2017). Zerumbone inhibits melanoma cell proliferation and migration by altering mitochondrial functions. Oncology Letters, 13(4), 2397–2402. https://doi.org/10.3892/ol.2017.5742
Zainal, N. S., Gan, C. P., Lau, B. F., Yee, P. S., Tiong, K. H., Abdul Rahman, Z. A., Patel, V., & Cheong, S. C. (2018). Zerumbone targets the CXCR4-RhoA and PI3K-mTOR signaling axis to reduce motility and proliferation of oral cancer cells. Phytomedicine, 39, 33–41. https://doi.org/10.1016/J.PHYMED.2017.12.011
Zhang, S., Liu, Q., Liu, Y., Qiao, H., & Liu, Y. (2012a). Zerumbone, a Southeast Asian ginger sesquiterpene, induced apoptosis of pancreatic carcinoma cells through p53 signaling pathway. Evidence-Based Complementary and Alternative Medicine, 2012, 12–15. https://doi.org/10.1155/2012/936030
Zhang, S., Liu, Q., Liu, Y., Qiao, H., & Liu, Y. (2012b). Zerumbone, a Southeast Asian Ginger Sesquiterpene, Induced Apoptosis of Pancreatic Carcinoma Cells through p53 Signaling Pathway. Evidence-Based Complementary and Alternative Medicine : ECAM, 2012. https://doi.org/10.1155/2012/936030
Published
2023-12-31
How to Cite
Doloking, H., Lallo, S., Manggau, M. A., & Rifai, Y. (2023). Antioxidant Activity of Zerumbone and Its Pharmacological Prospects in Oxidative Stress Conditions: A Narrative Review. Ad-Dawaa’ Journal of Pharmaceutical Sciences, 6(2), 103-125. https://doi.org/10.24252/djps.v6i2.39968
Section
Artikel
Abstract viewed = 116 times