Kajian in Silico Aktivitas Antioksidan Senyawa Bioaktif dalam Minyak Serai (Cymbopogon citratus)

  • Dewi Ratih Tirto Sari Universitas Brawijaya
    (ID)
  • Yohanes Bare Universitas Nusa Nipa
    (ID)

Abstract

stress oxidative is a factor promoting metabolic syndrome and other diseases. oxidative stress could be minimalized by exogen and endogen antioxidants. Essential oil from Cymbopogon citratus extract have potential activities as anti-inflammatory and relaxing. This study determined the potential activity as antioxidant through kelch ECH associating protein 1 (KEAP1) inhibition. Four phytosterol compounds from Cymbopogon citratus essential oil, including 3,7-dimethyl-1,3,6-octatriene, decanal, elemol, dan selina- 6-en-4-ol, were downloaded from PubChem database. four compounds were docked with KEAP1 protein and analyzed using Discovery studio ver. 19.0.0.  3,7-dimethyl-1,3,6-octatriene, decanal, elemol, and selina-6-en-4-ol bound to KEAP1 in certain amino acid residues with hydrophobic interaction and hydrogen bond. Interestingly, 3,7-dimethyl-1,3,6-octatriene proved five hydrophobic interaction, higher than decanal and selina-6-en-4-ol. The elemol, and selina-6-en-4-ol interacted with KEAP1 showing lower binding affinity and tight interaction. This study suggested that 3,7-dimethyl-1,3,6-octatriene, decanal, elemol, and selina-6-en-4-ol promoted antioxidant activity. 

Downloads

Download data is not yet available.

Author Biographies

Dewi Ratih Tirto Sari, Universitas Brawijaya
Jurusan Biologi
Yohanes Bare, Universitas Nusa Nipa
Program Studi Pendidikan Biologi

References

Abed, D. A., Goldstein, M., Albanyan, H., Jin, H., & Hu, L. (2015). Discovery of direct inhibitors of Keap1-Nrf2 protein-protein interaction as potential therapeutic and preventive agents. Acta Pharmaceutica Sinica B, 5(4), 285–299. https://doi.org/10.1016/j.apsb.2015.05.008

Arora, R., Sawney, S., Saini, V., Steffi, C., Tiwari, M., & Saluja, D. (2016). Esculetin induces antiproliferative and apoptotic response in pancreatic cancer cells by directly binding to KEAP1. Molecular Cancer, 15(1), 1–15. https://doi.org/10.1186/s12943-016-0550-2

Avoseh, O., Oyedeji, O., Rungqu, P., Nkeh-Chungag, B., & Oyedeji, A. (2015). Cymbopogon species; ethnopharmacology, phytochemistry and the pharmacological importance. Molecules, 20(5), 7438–7453. https://doi.org/10.3390/molecules20057438

Baird, L., & Yamamoto, M. (2020). The Molecular Mechanism Regulating the KEAP1-NRF2 Pathway. Molecular and Cellular Biology, 40(13), 1–23.

Bare, Yohanes;, Helvina, M., Elizabeth, A., & Sari, D. R. T. (2019). Potensi Asam Kafeat Pada Kopi Sebagai Simultan Gen Peroxixme Proliferator-Activated Receptor Gamma (Ppar-Î3): Studi in Silico. Saintek Lahan Kering, 2(Vol 2 No 2 (2019): JSLK Desember 2019), 52–53. Retrieved from http://savana-cendana.id/index.php/SLK/article/view/866

Bare, Yohanes, Maulidi, A., Sari, D. R. T., & Tiring, S. S. N. D. (2019). Studi in Silico Prediksi Potensi 6-Gingerol sebagai inhibitor c-Jun N-terminal kinases (JNK). Jurnal Jejaring Matematika Dan Sains, 1(2), 59–63. https://doi.org/10.36873/jjms.v1i2.211

Bare, Yohanes, S, M., Putra, S. H. J., L, M. R. W. G., & Sari, D. R. T. (2020). In-silico Approach for The Prediction of Chlorogenic Acid as PPAR-γ Activator. Biota, 13(1). https://doi.org/10.20414/jb.v13i1.197

Bare, Yohanes, S, M., Tiring, S. S. N. D., Sari, D. R. T., & Maulidi, A. (2020). Virtual Screening: Prediksi potensi 8-shogaol terhadap c-Jun N-Terminal Kinase (JNK). Jurnal Penelitian Dan Pengkajian Ilmu Pendidikan: E-Saintika, 4(1), 1. https://doi.org/10.36312/e-saintika.v4i1.157

Bare, Yohanes, Sari, D. R., Rachmad, Y. T., Tiring, S. S. N. D., Rophi, A. H., & Nugraha, F. A. D. (2019). Prediction Potential Chlorogenic Acid As Inhibitor Ace (In Silico Study). Bioscience, 3(2), 197. https://doi.org/10.24036/0201932105856-0-00

Bare, Yohanes, Sari, D. R. T., Rachmad, Y. T., Krisnamurti, G. C., & Elizabeth, A. (2019). In Silico Insight the Prediction of Chlorogenic Acid in Coffee through Cyclooxygenase-2 (COX2) Interaction. Biogenesis: Jurnal Ilmiah Biologi, 7(2), 100–105. https://doi.org/10.24252/bio.v7i2.9847

Bayala, B., Coulibaly, A. Y., Djigma, F. W., Nagalo, B. M., Baron, S., Figueredo, G., … Simpore, J. (2020). Chemical composition, antioxidant, anti-inflammatory and antiproliferative activities of the essential oil of Cymbopogon nardus, a plant used in traditional medicine. Biomolecular Concepts, 11(1), 86–96. https://doi.org/10.1515/bmc-2020-0007

Boukhatem, M. N., Ferhat, M. A., Kameli, A., Saidi, F., & Kebir, H. T. (2014). Lemon grass (Cymbopogon citratus) essential oil as a potent anti-inflammatory and antifungal drugs. Libyan Journal of Medicine, 9(25431), 1–10. https://doi.org/10.3402/ijmm.v9.25431

Canning, P., Sorrell, F. J., & Bullock, A. N. (2015). Structural basis of Keap1 interactions with Nrf2. Free Radical Biology and Medicine, 88(Part B), 101–107. https://doi.org/10.1016/j.freeradbiomed.2015.05.034

Chanthai, S., Prachakoll, S., Ruangviriyachai, C., & Luthria, D. L. (2012). Influence of extraction methodologies on the analysis of five major volatile aromatic compounds of citronella grass (cymbopogon nardus) and lemongrass (cymbopogon citratus) grown in thailand. Journal of AOAC International, 95(3), 763–772. https://doi.org/10.5740/jaoacint.11-335

Chartoumpekis, D., & Kensler, T. (2013). New Player on An Old Field; the Keap1/Nrf2 Pathway as a Target for Treatment of Type 2 Diabetes and Metabolic Syndrome. Current Diabetes Reviews, 9(2), 137–145. https://doi.org/10.2174/1573399811309020005

Chen, D., Oezguen, N., Urvil, P., Ferguson, C., Dann, S. M., & Savidge, T. C. (2016). Regulation of protein-ligand binding affinity by hydrogen bond pairing. Science Advances, 2(3). https://doi.org/10.1126/sciadv.1501240

Costa, C. A. R. A., Bidinotto, L. T., Takahira, R. K., Salvadori, D. M. F., Barbisan, L. F., & Costa, M. (2011). Cholesterol reduction and lack of genotoxic or toxic effects in mice after repeated 21-day oral intake of lemongrass (Cymbopogon citratus) essential oil. Food and Chemical Toxicology, 49(9), 2268–2272. https://doi.org/10.1016/j.fct.2011.06.025

Dallakyan, S., & Olson, A. J. (2015). Small molecule library screening by docking with PyRx. Methods Mol Biol, 1263, 243–250.

David, J. A., Rifkin, W. J., Rabbani, P. S., & Ceradini, D. J. (2017). The Nrf2/Keap1/ARE Pathway and Oxidative Stress as a Therapeutic Target in Type II Diabetes Mellitus. Journal of Diabetes Research, 2017. https://doi.org/10.1155/2017/4826724

Dayalan Naidu, S., & Dinkova-Kostova, A. T. (2020). KEAP1, a cysteine-based sensor and a drug target for the prevention and treatment of chronic disease: KEAP1, a sensor and a drug target. Open Biology, 10(6). https://doi.org/10.1098/rsob.200105rsob200105

Elsayed Azab, A., A Adwas, Almokhtar, Ibrahim Elsayed, A. S., A Adwas, A., Ibrahim Elsayed, Ata Sedik, & Quwaydir, F. A. (2019). Oxidative stress and antioxidant mechanisms in human body. Journal of Applied Biotechnology & Bioengineering, 6(1), 43–47. https://doi.org/10.15406/jabb.2019.06.00173

Ewansiha, J., Garba, S., Mawak, J., & Oyewole, O. (2013). Antimicrobial Activity of Cymbopogon Citratus (Lemon Grass) and It’s Phytochemical Properties. Frontiers in Science, 2(6), 214–220. https://doi.org/10.5923/j.fs.20120206.14

Gbenou, J. D., Ahounou, J. F., Akakpo, H. B., Laleye, A., Yayi, E., Gbaguidi, F., … Kotchoni, S. O. (2013). Phytochemical composition of Cymbopogon citratus and Eucalyptus citriodora essential oils and their anti-inflammatory and analgesic properties on Wistar rats. Molecular Biology Reports, 40(2), 1127–1134. https://doi.org/10.1007/s11033-012-2155-1

Hypertrophy, I. C. (2020). Cymbopogon Proximus Essential Oil Protects Rats.

Kamble, S. M., Patel, H. M., Goyal, S. N., Noolvi, M. N., Mahajan, U. B., Ojha, S., & Patil, C. R. (2016). In silico Evidence for Binding of Pentacyclic Triterpenoids to Keap1-Nrf2 Protein-Protein Binding Site. Combinatorial Chemistry & High Throughput Screening, 20(3). https://doi.org/10.2174/1386207319666161214111822

Kansanen, E., Kuosmanen, S. M., Leinonen, H., & Levonenn, A. L. (2013). The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biology, 1(1), 45–49. https://doi.org/10.1016/j.redox.2012.10.001

Kumagai, Y., Kanda, H., Shinkai, Y., & Toyama, T. (2013). The role of the Keap1/Nrf2 pathway in the cellular response to methylmercury. Oxidative Medicine and Cellular Longevity, 2013(Table 1). https://doi.org/10.1155/2013/848279

Leite, B. L. S., Bonfim, R. R., Antoniolli, A. R., Thomazzi, S. M., Araújo, A. A. S., Blank, A. F., … Quintans-Júnior, L. J. (2010). Assessment of antinociceptive, anti-inflammatory and antioxidant properties of Cymbopogon winterianus leaf essential oil. Pharmaceutical Biology, 48(10), 1164–1169. https://doi.org/10.3109/13880200903280000

Lo, S. C., Li, X., Henzl, M. T., Beamer, L. J., & Hannink, M. (2006). Structure of the Keap1:Nrf2 interface provides mechanistic insight into Nrf2 signaling. EMBO Journal, 25(15), 3605–3617. https://doi.org/10.1038/sj.emboj.7601243

Mitsuishi, Y., Motohashi, H., & Yamamoto, M. (2012). The Keap1–Nrf2 system in cancers: stress response and anabolic metabolism. Frontiers in Oncology, 2(December), 1–13. https://doi.org/10.3389/fonc.2012.00200

Mohamed Hanaa, A. R., Sallam, Y. I., El-Leithy, A. S., & Aly, S. E. (2012). Lemongrass (Cymbopogon citratus) essential oil as affected by drying methods. Annals of Agricultural Sciences, 57(2), 113–116. https://doi.org/10.1016/j.aoas.2012.08.004

Nimse, S. B., & Pal, D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 5(35), 27986–28006. https://doi.org/10.1039/c4ra13315c

Panieri, E., Buha, A., Telkoparan-akillilar, P., Cevik, D., Kouretas, D., Veskoukis, A., … Saso, L. (2020). Potential applications of NRF2 modulators in cancer therapy. Antioxidants, 9(3), 1–48. https://doi.org/10.3390/antiox9030193

Rojas-Armas, J. P., Arroyo-Acevedo, J. L., Palomino-Pacheco, M., Herrera-Calderón, O., Ortiz-Sánchez, J. M., Rojas-Armas, A., … Hilario-Vargas, J. (2020). The essential oil of Cymbopogon citratus stapt and carvacrol: An approach of the antitumor effect on 7,12-dimethylbenz-[α]-anthracene (DMBA)-induced breast cancer in female rats. Molecules, 25(14), 1–15. https://doi.org/10.3390/molecules25143284

Sah, S. Y., Sia, C. M., Chang, S. K., Ang, Y. K., & Yim, H. S. (2012). Antioxidant Capacity and Total Phenolic Content of Lemongrass (Cymbopogon Citratus) Leave. Annals. Food Science and Technology, 13(2), 150–155.

Sari, D. R.T., Safitri, A., Cairns, J. R. K., & Fatchiyah, F. (2020). Virtual screening of black rice anthocyanins as antiobesity through inhibiting TLR4 and JNK pathway. Journal of Physics: Conference Series, 1665(1). https://doi.org/10.1088/1742-6596/1665/1/012024

Sari, Dewi Ratih Tirto;, & Bare, Y. (2020). Physicochemical properties and biological activity of bioactive compound in Pepper nigrum: In silico study. Spizaetus: Jurnal Biologi Dan Pendidikan Biologi, 1(1), 1–6.

Sari, Dewi Ratih Tirto, Cairns, J. R. K., Safitri, A., & Fatchiyah, F. (2019). Virtual prediction of the delphinidin-3-o-glucoside and peonidin-3-o-glucoside as anti-inflammatory of TNF-α signaling. Acta Informatica Medica, 27(3), 152–157. https://doi.org/10.5455/aim.2019.27.152-157

Sari, Dewi Ratih Tirto, Safitri, A., Cairns, J. R. K., & Fatchiyah, F. (2020). Anti-Apoptotic Activity of Anthocyanins has Potential to inhibit Caspase-3 Signaling. Journal of Tropical Life Sciences, 10(1), 15–25. https://doi.org/10.11594/jtls.10.01.03

Silva, M. de F., Pruccoli, L., Morroni, F., Sita, G., Seghetti, F., Viegas, C., & Tarozzi, A. (2018). The Keap1/Nrf2-ARE pathway as a pharmacological target for chalcones. Molecules, 23(7), 1–22. https://doi.org/10.3390/molecules23071803

Viktorová, J., Stupák, M., Řehořová, K., Dobiasová, S., Hoang, L., Hajšlová, J., … Ruml, T. (2020). Lemon grass essential oil does not modulate cancer cells multidrug resistance by citral—its dominant and strongly antimicrobial compound. Foods, 9(5). https://doi.org/10.3390/foods9050585

Wei, R., Enaka, M., & Muragaki, Y. (2019). Activation of KEAP1/NRF2/P62 signaling alleviates high phosphate-induced calcification of vascular smooth muscle cells by suppressing reactive oxygen species production. Scientific Reports, 9(1), 1–13. https://doi.org/10.1038/s41598-019-46824-2

Published
2021-06-21
How to Cite
Sari, D. R. T., & Bare, Y. (2021). Kajian in Silico Aktivitas Antioksidan Senyawa Bioaktif dalam Minyak Serai (Cymbopogon citratus). Al-Kimia, 9(1), 61-69. https://doi.org/10.24252/al-kimia.v9i1.18986
Section
Article
Abstract viewed = 962 times