Optimization of Biodiesel Synthesis Process from Waste Cooking Oil in a Phased Array Ultrasonic Reactor Using Response Surface Methode

  • Tiara Priscilla Politeknik Negeri Samarinda
    (ID)
  • Muhammad Ardycha Yudha Ramadhani Politeknik Negeri Samarinda
    (ID)
  • Wempi Prayogo Politeknik Negeri Samarinda
    (ID)
  • Nikmah Nurjannah Politeknik Negeri Samarinda
    (ID)
  • Faris Achmad Parmadi Politeknik Negeri Samarinda
    (ID)
  • Zainal Arifin Politeknik Negeri Samarinda
    (ID)

Abstract

The research aims to optimize the process of biodiesel synthesis from used cooking oil using Response Surface Methodology (RSM) in ultrasonic phased array reactor. Used cooking oil, as a potential waste source, has been identified as a sustainable alternative feedstock for biodiesel production. The use of ultrasonic phased array reactors is expected to improve conversion efficiency through cavitation to produce high yields and purity of biodiesel. RSM used to obtain the optimal combination of transesterification reaction conditions, including variables such as feedstock ratio, catalyst concentration, and reaction time. A quantity of methanol and NaOH was transesterified in a reactor that had been filled with used cooking oil. The results showed the yield of biodiesel was achieved at 90.3250% with an optimum mole ratio of 1:7.59 (oil to methanol), a catalytic concentration of NaOH 0.14% by weight of oil and a reaction time of 15 minutes. The oil/methanol ratio is the most important operating parameter based on the ANOVA test. Based on the physical properties of biodiesel on density, kinematic viscosity, flash point, carbon residue and based on the results of GC-MS testing the biodiesel produced is in accordance with SNI 7182:2015.

Downloads

Download data is not yet available.

References

Afandi, M. F. (2023). Pengaruh Rasio Molar Terhadap Kualitas Biodiesel Dari Biji Karet (Hevea Brasiliensis) Metode Non-Katalis Aliran Semi Kontinu. Jurnal Teknik Mesin, 11(01), 49–54.

Amenaghawon, A. N., Obahiagbon, K., Isesele, V., & Usman, F. (2022). Optimized biodiesel production from waste cooking oil using a functionalized bio-based heterogeneous catalyst. Cleaner Engineering and Technology, 8, 2–11.

Andalia, W., Sukarmansyah, & Fauzie, A. (2018). Analisis Emisi Gas Buang Hasil Pembakaran Solar Dan Biosolar (B25) Pada Fire Tube Boiler. Poros, 16(1), 86–93.

Arifin, Z., Samosir, D., & Sirajuddin. (2022). Penerapan metode permukaan respon pada pengamatan pitting corrosion plat baja SS 400 di lingkungan asam. Literasi Nusantara.

Avinash, A., & Murugesan, A. (2018). Prediction capabilities of mathematical models in producing a renewable fuel from waste cooking oil for sustainable energy and clean environment. Fuel, 216(November 2017), 322–329.

Azhari, Mulyawan, R., Nasrul, Z., Hakim, L., & Lubis, N. A. (2023). Pembuatan Biodiesel Dari Campuran Minyak Jarak Kepyar (Ricinus Communis) Dengan Minyak Jelantah Menggunakan Katalis Cao Limbah Cangkang Kerang Darah. Jurnal Teknologi Kimia Unimal, 11(1), 122–131.

ESDM. (2021). Menatap Arah Transisi Energi di Indonesia.

Etim, A. O., Musonge, P., & Eloka-Eboka, A. C. (2020). Effectiveness of biogenic waste- derived heterogeneous catalysts and feedstock hybridization techniques in biodiesel production. Biofuels, Bioproducts and Biorefining, 14(3), 620–649.

Frazão do Nascimento, M. R., Gomes Aranda, D. A., Cavalcante Fai, A. E., Dourado Silveira, S., Reyes Cruz, Y., Santiago Soares, F., & da Siqueira Cavalcanti, E. H. (2016). Dual-stage methodology for production, characterization, and storage stability of Jatropha curcas biodiesel. Biomass Conversion and Biorefinery, 6(2), 209–218.

Gantini, S. N., & Widayanti, A. (2018). Analisa Data Response Surface Methodology Pada Pengembangan Granul Probiotik Lactobacillus Casei.

Ghavami, K., Akhlaghian, F., & Rahmani, F. (2022). Potassium compounds-Al2O3 catalyst synthesized by using the sol-gel urea combustion method for transesterification of sunflower and waste cooking oils. Biomass Conversion and Biorefinery, 12(4), 1139– 1152.

Greever, J. (1995). Organic Chemistry (Fessenden, Ralph J.; Fessenden, Joan S.). ACS Publications.

Gultom, T. (2001). Individual Textbook Biokimia. Jurusan Pendidikan Kimia Fakultas MIPA Universitas Negeri. Yogyakarta.

Hartono, R., Rama Denny, Y., Ramdhani, D. S., Assaat, L. D., Wildha Priakbar, A., & Ribawa, W. H. (2023). Pembuatan Biodiesel Dengan Reaktor Bersirkulasi Sederhana Menggunakan Katalis KOH. Jurnal Teknologi, 15(1), 123–132.

Iqbal, H. M. (2013). Analisis Data Penelitian Dengan Statistik. Bumi Aksara.

Ma, F., & Hanna, M. A. (1999). Biodiesel production: a review. Bioresource Technology, 70, 1–15.

Montgomery, D. C. (2017). Experrimenta Design. In I. John Wiley & Sons (Ed.), Mycological Research (Ninth, Vol. 106, Issue 11).

Mukminin, A., Megawati, E., Warsa, I. K., Yuniarti, Y., Umaro, W. A., & Islamiati, D. (2022). Analisis Kandungan Biodiesel Hasil Reaksi Transesterifikasi Minyak Jelantah Berdasarkan Perbedaan Kosentrasi Katalis NaOH Menggunakan GC-MS. Sang Pencerah: Jurnal Ilmiah Universitas Muhammadiyah Buton, 8(1), 146–158.

Navas, M. B., Lick, I. D., Bolla, P. A., Casella, M. L., & Ruggera, J. F. (2018). Transesterification of soybean and castor oil with methanol and butanol using heterogeneous basic catalysts to obtain biodiesel. Chemical Engineering Science, 187, 1–26.

Ningtyas, D. P., Budhiyanti, S. A., & Sahubawa, L. (2013). Pengaruh Katalis Basa (NaOH) Pada Tahap Reaksi Transesterifikasi Terhadap Kualitas Biofuel Dari Minyak Tepung Ikan Sardin. Jurnal Teknosains, 2(2), 103–114.

Oliveira, P. A., Baesso, R. M., Moraes, G. C., Alvarenga, A. V., & Costa-Félix, R. P. B. (2018). Ultrasound Methods for Biodiesel Production and Analysis. In Biofuels - State of Development. IntechOpen Limited.

Putri, S. H. T. (2018). Optimasi Konsentrasi Cmc Dan Suhu Pengeringan Terhadap Kuat Tarik Pada Plastik Biodegradable Berbasis Pati Jagung Menggunakan Response Surface Methodology. Universitas Brawijaya.

Singh, D., Sharma, D., Soni, S. L., Sharma, S., Kumar Sharma, P., & Jhalani, A. (2020). A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel, 262, 1–15.

Tabatabaei, M., Aghbashlo, M., Dehhaghi, M., Panahi, H. K. S., Mollahosseini, A., Hosseini, M., &

Soufiyan, M. M. (2019). Reactor technologies for biodiesel production and processing: A review. Progress in Energy and Combustion Science, 74, 239–303.

Thangaraj, B., Solomon, P. R., Muniyandi, B., Ranganathan, S., & Lin, L. (2019). Catalysis in biodiesel production - A review. Clean Energy, 3(1), 1–22.

Veljković, V. B., Veličković, A. V., Avramović, J. M., & Stamenković, O. S. (2019). Modeling of biodiesel production: Performance comparison of Box–Behnken, face central composite and full factorial design. Chinese Journal of Chemical Engineering, 27(7), 1690–1698.

Published
2023-12-28
How to Cite
Priscilla, T., Ardycha Yudha Ramadhani, M., Prayogo, W., Nurjannah, N., Achmad Parmadi, F., & Arifin, Z. (2023). Optimization of Biodiesel Synthesis Process from Waste Cooking Oil in a Phased Array Ultrasonic Reactor Using Response Surface Methode. Al-Kimia, 11(2). https://doi.org/10.24252/al-kimia.v11i2.41555
Section
Article
Abstract viewed = 188 times