Pilihan Habitat Kupu-kupu (Lepidoptera: Rhopalocera) di Sepanjang Sistem Agroforestri Taman Nasional Lore Lindu dan Kawasan Enklave, Sulawesi, Indonesia
Abstract
Butterflies are well-established bio-indicators for assessing biodiversity and monitoring ecosystem responses to environmental disturbances. Understanding their habitat preferences can help identify critical areas that require conservation to sustain their populations. This study aimed to determine butterfly habitat preferences across six land-use types in Lore Lindu National Park (natural forest habitats: primary forest, secondary forest, agroforestry, and river streams) and the Lindu and Besoa Enclave areas (anthropogenic systems: cocoa plantations and settlements). Butterflies were collected using insect nets with sweep netting techniques along transect lines in each habitat. Each habitat was divided into three 200-meter-long transects, sampled using purposive sampling. Butterfly habitat preferences in natural and anthropogenic habitats were evaluated by comparing the number of individuals and species, the percentage of families, and species composition across habitats. 1,786 individuals from 85 species across five butterfly families were recorded in Lore Lindu National Park and the surrounding enclave areas. The highest number of individuals and species was found in agroforestry habitats (527 individuals, 46 species). In contrast, primary forests had the lowest number of species (14 species), and river streams had the fewest individuals (76 individuals). The highest diversity index was found in agroforestry habitats (H' = 3.33, E = 0.75), while the lowest was in primary forests (H' = 2.27, E = 0.51). The Nymphalidae family had the highest percentage of species and individuals, distributed across all habitats. Species composition similarity among butterfly habitats grouped them into three categories: primary forest‒river stream, cocoa plantation‒settlement, and secondary forest‒agroforestry. Natural habitats (primary forests, secondary forests, agroforestry, and areas around river streams) supported a higher number of species compared to anthropogenic systems like cocoa plantations and settlements. Therefore, natural habitats are crucial for supporting butterfly populations in Lore Lindu National Park and its surrounding areas.
Downloads
References
Achard, F., Beuchle, R., Mayaux, P., Stibig, H. J., Bodart, C., Brink, A., Carboni, S., Desclée, B., Donnay, F., Eva, H. D., Lupi, A., Raši, R., Seliger, R., & Simonetti, D. (2014). Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Global Change Biology, 20(8), 2540–2554. https://doi.org/10.1111/gcb.12605
Achard, F., Eva, H. D., Stibig, H.-J., Mayaux, P., Gallego, J., Richards, T., & Malingreau, J.-P. (2002). Determination of Deforestation Rates of the World’s Humid Tropical Forests. SCIENCE, 297(999), 999–1002. www.sciencemag.org
Akite, P. (2008). Effects of anthropogenic disturbances on the diversity and composition of the butterfly fauna of sites in the Sango Bay and Iriiri areas, Uganda: implications for conservation. African Journal Ecology, 46, 3–13.
Alroy, J. (2017). Effects of habitat disturbance on tropical forest biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 114(23), 6056–6061. https://doi.org/10.1073/pnas.1611855114
Amaliah, R., Fahri, F., & Nguyen, A. D. (2024). New species and new record of the genus Amynthas Kinberg, 1867 (Oligochaeta: Megascolecidae) from Sulawesi, Indonesia. Raffles Bulletin of Zoology, 72, 116–126. https://doi.org/10.26107/RBZ-2024-0010
Ashton, P., & Zhu, H. (2020). The tropical-subtropical evergreen forest transition in East Asia: An exploration. Plant Diversity, 42(4), 255–280. https://doi.org/10.1016/j.pld.2020.04.001
Barrios, B., Pena, S. R., Salas, A., & Koptur, S. (2016). Butterflies visit more frequently, but bees are better pollinators: The importance of mouthpart dimensions in effective pollen removal and deposition. AoB PLANTS, 8. https://doi.org/10.1093/aobpla/plw001
Benayas, J. M. R., & Bullock, J. M. (2012). Restoration of Biodiversity and Ecosystem Services on Agricultural Land. Ecosystems, 15(6), 883–899. https://doi.org/10.1007/s10021-012-9552-0
Bogiani, P. A., Aranda, R., De Oliveira, C., & Machado2, F. (2012). Riqueza de Borboletas (Lepidoptera) em um Fragmento Urbano de Cerrado em Mato Grosso do Sul, Brasil. Ecologia, 5(2), 93–98. www.periodico.ebras.bio.brwww.periodico.ebras.bio.br
Bonebrake, T. C., Ponisio, L. C., Boggs, C. L., & Ehrlich, P. R. (2010). More than just indicators: A review of tropical butterfly ecology and conservation. Biological Conservation, 143(8), 1831–1841. https://doi.org/10.1016/j.biocon.2010.04.044
Bos, M. M., Höhn, P., Saleh, S., Büche, B., Buchori, D., Steffan-Dewenter, I., & Tscharntke, T. (2007). Insect diversity responses to forest conversion and agroforestry management. In T. Tscharntke, C. Lauschner, M. Zeller, E. Guharja, & A. Bidin (Eds.), The stability of tropical rainforest margins, linking ecological, economic and social constraints of land use and conservation (pp. 279–296).
Braby, M. F. (2004). The Complete Field Guide to Butterflies of Australia.
Bray, R. J., & Curtis, J. (1957). An ordination of the upland forest communities of southern wisconsin. Ecological Monographs, 27(4), 325–349.
Burivalova, Z., Şekercioǧlu, Ç. H., & Koh, L. P. (2014). Thresholds of logging intensity to maintain tropical forest biodiversity. Current Biology, 24(16), 1893–1898. https://doi.org/10.1016/j.cub.2014.06.065
Chowdhury, S., Hesselberg, T., Böhm, M., Islam, M. R., & Aich, U. (2017). Butterfly diversity in a tropical urban habitat (Lepidoptera: Papilionoidea). Oriental Insects, 51(4), 417–430. https://doi.org/10.1080/00305316.2017.1314230
Collins, N. M., & Morris, M. G. (1985). Threatened Swallowtail Butterflies of the World-The IUCN Red Data Book.
Corlett, R. T. (2017). Frugivory and seed dispersal by vertebrates in tropical and subtropical Asia: An update. Global Ecology and Conservation, 11, 1–22. https://doi.org/10.1016/j.gecco.2017.04.007
Crossley, M. S., Smith, O. M., Berry, L. L., Phillips-Cosio, R., Glassberg, J., Holman, K. M., Holmquest, J. G., Meier, A. R., Varriano, S. A., McClung, M. R., Moran, M. D., & Snyder, W. E. (2021). Recent climate change is creating hotspots of butterfly increase and decline across North America. Global Change Biology, 27(12), 2702–2714. https://doi.org/10.1111/gcb.15582
de Araújo, L. D. A., Quirino, Z. G. M., & Machado, I. C. (2014). High specialisation in the pollination system of Mandevilla tenuifolia (J.C. Mikan) Woodson (Apocynaceae) drives the effectiveness of butterflies as pollinators. Plant Biology, 16(5), 947–955. https://doi.org/10.1111/plb.12152
Dennis, R. L. H., Shreeve, T. G., & Dyck, H. Van. (2003). Towards a Functional Resource-Based Concept for Habitat: A Butterfly Biology Viewpoint. Oikos, 102(2), 417–426.
Donald, P. F. (2004). Biodiversity Impacts of Some Agricultural Commodity Production Systems. Conservation Biology, 18(1), 17–37.
Fahri, Atmowidi, T., & Noerdjito, W. A. (2016). Diversity and Abundance of Cerambycid Beetles in the Four Major Land-use Types Found in Jambi Province, Indonesia. HAYATI Journal of Biosciences, 23(2), 56–61. https://doi.org/10.1016/j.hjb.2016.06.001
Fahri, F., Amaliah, R., Annawaty, A., & Nguyen, A. D. (2017). The earthworm genus polypheretima Michaelsen, 1934 (Annelida: Clitellata: Megascolecidae) from Sulawesi, Indonesia, with descriptions of four new species. Raffles Bulletin of Zoology, 65.
Fahri, F., Amaliah, R., Suryobroto, B., Atmowidi, T., & Nguyen, A. D. (2018). Three new “caecate” earthworm species from sulawesi, Indonesia (Oligochaeta, megascolecidae). ZooKeys, 805, 1–14. https://doi.org/10.3897/zookeys.805.24834
Freitas, A. V. L., Agra Iserhard, C., Pereira Santos, J., Yasmin Oliveira Carreira, J., Bandini Ribeiro, D., Henrique Alves Melo, D., Henrique Batista Rosa, A., João Marini-filho, O., Mattos Accacio, G., & Uehara-prado, M. (2014). Studies with butterfly bait traps: an overview. Revista Colombiana de Entomología, 40(2), 209–218.
Gani, A., Suhendra, N., Herder, F., Schwarzer, J., Mohring, J., Montenegro, J., Herjayanto, M., & Mokodongan, F. D. (2022). A new endemic species of pelvic-brooding ricefish (Beloniformis: Adrianichthyidae: Orizias) from Lake Kalimpa’a, Sulawesi, Indonesia. Bonn Zoological Bulletin, 71, 77–85.
Gasparatos, A., Doll, C. N. H., Esteban, M., Ahmed, A., & Olang, T. A. (2017). Renewable energy and biodiversity: Implications for transitioning to a Green Economy. Renewable and Sustainable Energy Reviews, 70, 161–184. https://doi.org/10.1016/j.rser.2016.08.030
Gras, P., Tscharntke, T., Maas, B., Tjoa, A., Hafsah, A., & Clough, Y. (2016). How ants, birds and bats affect crop yield along shade gradients in tropical cacao agroforestry. Journal of Applied Ecology, 53(3), 953–963. https://doi.org/10.1111/1365-2664.12625
Hamer, K. C., Hill, J. K., Benedick, S., Mustaffa, N., Sherratt, T. N., Maryati, M., & Chey, V. K. (2003). Ecology of butterflies in natural and selectively logged forests of northern Borneo: The importance of habitat heterogeneity. Journal of Applied Ecology, 40(1), 150–162. https://doi.org/10.1046/j.1365-2664.2003.00783.x
Herrera-Alsina, L., Algar, A. C., Bocedi, G., Gubry-Rangin, C., Lancaster, L. T., Mynard, P., Osborne, O. G., Papadopulos, A. S. T., Creer, S., Nangoy, M., Fahri, F., Lupiyaningdyah, P., Sudiana, I. M., Juliandi, B., & Travis, J. M. J. (2021a). Ancient geological dynamics impact neutral biodiversity accumulation and are detectable in phylogenetic reconstructions. Global Ecology and Biogeography, 30(8), 1633–1642. https://doi.org/10.1111/geb.13326
Herrera-Alsina, L., Algar, A. C., Bocedi, G., Gubry-Rangin, C., Lancaster, L. T., Mynard, P., Osborne, O. G., Papadopulos, A. S. T., Creer, S., Nangoy, M., Fahri, F., Lupiyaningdyah, P., Sudiana, I. M., Juliandi, B., & Travis, J. M. J. (2021b). Ancient geological dynamics impact neutral biodiversity accumulation and are detectable in phylogenetic reconstructions. Global Ecology and Biogeography, 30(8), 1633–1642. https://doi.org/10.1111/geb.13326
Houlihan, P. R., Harrison, M. E., & Cheyne, S. M. (2013). Impacts of forest gaps on butterfly diversity in a Bornean peat-swamp forest. Journal of Asia-Pacific Entomology, 16(1), 67–73. https://doi.org/10.1016/j.aspen.2012.10.003
Jain, A., Lim, F. K. S., & Webb, E. L. (2017). Species-habitat relationships and ecological correlates of butterfly abundance in a transformed tropical landscape. Biotropica, 49(3), 355–364. https://doi.org/10.1111/btp.12435
Jones, J. P. G., Mandimbiniaina, R., Kelly, R., Ranjatson, P., Rakotojoelina, B., Schreckenberg, K., & Poudyal, M. (2018). Human migration to the forest frontier: Implications for land use change and conservation management. Geo: Geography and Environment, 5(1). https://doi.org/10.1002/geo2.50
Jose, S. (2012). Agroforestry for conserving and enhancing biodiversity. Agroforestry Systems, 85(1), 1–8. https://doi.org/10.1007/s10457-012-9517-5
Júnior, G. de B. F., & Diniz, I. R. (2015). Temporal dynamics of fruit-feeding butterflies (Lepidoptera: Nymphalidae) in two habitats in a seasonal Brazilian environment. Florida Entomologist, 98(4), 1207–1216. https://doi.org/10.1653/024.098.0430
Kawahara, A. Y. (2013). Systematic revision and review of the extant and fossil snout butterflies (Lepidoptera: Nymphalidae: Libytheinae). Zootaxa, 3631(1), 1–74. https://doi.org/10.11646/zootaxa.3631.1.1
Kocher, S. D., & Williams, E. H. (2000). The diversity and abundance of North American butterflies vary with habitat disturbance and geography. Journal of Biogeography, 27, 785–794.
Koneri, R., Nangoy, M. J., Maabuat, P. V., & Wakhid. (2023). Butterfly species in Bogani Nani Wartabone National Park, North Sulawesi, Indonesia. Biodiversitas, 24(2), 1242–1251. https://doi.org/10.13057/biodiv/d240266
Koneri, R., Nangoy, M. J., & Saroyo. (2020). Relationships between butterfly with feed plants in Sangihe Islands, North Sulawesi, Indonesia. Pakistan Journal of Biological Sciences, 23(6), 804–812. https://doi.org/10.3923/pjbs.2020.804.812
Kuussaari, M., Toivonen, M., Heliölä, J., Pöyry, J., Mellado, J., Ekroos, J., Hyyryläinen, V., Vähä-Piikkiö, I., & Tiainen, J. (2021). Butterfly species’ responses to urbanization: differing effects of human population density and built-up area. Urban Ecosystems, 24(3), 515–527. https://doi.org/10.1007/s11252-020-01055-6
Kwon, T. S., Kim, S. S., Chun, J. H., Byun, B. K., Lim, J. H., & Shin, J. H. (2010). Changes in butterfly abundance in response to global warming and reforestation. Environmental Entomology, 39(2), 337–345. https://doi.org/10.1603/EN09184
Lang, S.-Y. (2012). Nymphalidae of China (Lepidoptera, Rhopalocera) (S.-Y. Lang, Ed.). Tshikolovets Publications.
Lohman, D. J., De Bruyn, M., Page, T., Von Rintelen, K., Hall, R., Ng, P. K. L., Shih, H. Te, Carvalho, G. C., & Von Rintelen, T. (2011). Beyond Wallaces line: Genes and biology inform historical biogeographical insights in the Indo-Australian archipelago. Annual Review of Ecology, Evolution, and Systematics, 42. https://doi.org/10.1146/annurev-ecolsys-102710-145001
Luppi, M., Dondina, O., Orioli, V., & Bani, L. (2018). Local and landscape drivers of butterfly richness and abundance in a human-dominated area. Agriculture, Ecosystems and Environment, 254, 138–148. https://doi.org/10.1016/j.agee.2017.11.020
Maas, B., Tscharntke, T., Saleh, S., Dwi Putra, D., & Clough, Y. (2015). Avian species identity drives predation success in tropical cacao agroforestry. Journal of Applied Ecology, 52(3), 735–743. https://doi.org/10.1111/1365-2664.12409
Magurran, A. E. (2004). Measuring Biological Diversity. Blackwell Publishing company.
Mahata, A., Panda, R. M., Dash, P., Naik, A., Naik, A. K., & Palita, S. K. (2023). Microclimate and Vegetation Structure Significantly Affect Butterfly Assemblages in a Tropical Dry Forest. Climate, 11(11). https://doi.org/10.3390/cli11110220
Malcolm, S. B. (2018). Anthropogenic Impacts on Mortality and Population Viability of the Monarch Butterfly. Annu. Rev. Entomol, 63, 277–302. https://doi.org/10.1146/annurev-ento-020117
McGuire, J. A., Huang, X., Reilly, S. B., Iskandar, D. T., Wang-Claypool, C. Y., Werning, S., Chong, R. A., Lawalata, S. Z. S., Stubbs, A. L., Frederick, J. H., Brown, R. M., Evans, B. J., Arifin, U., Riyanto, A., Hamidy, A., Arida, E., Koo, M. S., Supriatna, J., Andayani, N., & Hall, R. (2023). Species Delimitation, Phylogenomics, and Biogeography of Sulawesi Flying Lizards: A Diversification History Complicated by Ancient Hybridization, Cryptic Species, and Arrested Speciation. Systematic Biology, 72(4), 885–911. https://doi.org/10.1093/sysbio/syad020
Mcneely, J. A. (2004). Nature vs. nurture: managing relationships between forests, agroforestry and wild biodiversity. Agroforestry Systems, 61, 155–165.
Mittermeier, R. A., Myers, N., Thomsen, J. B., Da Fonseca, G. A. B., & Olivieri, S. (1998). Society for Conservation Biology Biodiversity Hotspots and Major Tropical Wilderness Areas: Approaches to Setting Conservation Priorities. In Biology (Vol. 12, Issue 3). http://www.jstor.orgURL:http://www.jstor.org/stable/2387233http://www.jstor.org/stable/2387233?seq=1&cid=pdf-reference#references_tab_contents
Montejo-Kovacevich, G., Marsh, C. J., Smith, S. H., Peres, C. A., & Edwards, D. P. (2022). Riparian reserves protect butterfly communities in selectively logged tropical forest. Journal of Applied Ecology, 59(6), 1524–1535. https://doi.org/10.1111/1365-2664.14162
Morris, E. K., Caruso, T., Buscot, F., Fischer, M., Hancock, C., Maier, T. S., Meiners, T., Müller, C., Obermaier, E., Prati, D., Socher, S. A., Sonnemann, I., Wäschke, N., Wubet, T., Wurst, S., & Rillig, M. C. (2014). Choosing and using diversity indices: Insights for ecological applications from the German Biodiversity Exploratories. Ecology and Evolution, 4(18), 3514–3524. https://doi.org/10.1002/ece3.1155
Motzke, I., Klein, A. M., Saleh, S., Wanger, T. C., & Tscharntke, T. (2016). Habitat management on multiple spatial scales can enhance bee pollination and crop yield in tropical homegardens. Agriculture, Ecosystems and Environment, 223, 144–151. https://doi.org/10.1016/j.agee.2016.03.001
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. NATURE, 403, 853–857. www.nature.com
Myers, N., Mittermeier2, R. A., Mittermeier2, C. G., Da Fonseca3, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. In NATURE | (Vol. 403). www.nature.com
Newbold, T., Hudson, L. N., Phillips, H. R. P., Hill, S. L. L., Contu, S., Lysenko, I., Blandon, A., Butchart, S. H. M., Booth, H. L., Day, J., De Palma, A., Harrison, M. L. K., Kirkpatrick, L., Pynegar, E., Robinson, A., Simpson, J., Mace, G. M., Scharlemann, J. P. W., & Purvis, A. (2014). A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures. Proceedings of the Royal Society B: Biological Sciences, 281(1792). https://doi.org/10.1098/rspb.2014.1371
Ngongolo, K., & Mtoka, S. (2013). Using Butterflies to Measure Biodiversity Health in Wazo Hill Restored Quarry. Journal of Entomology and Zoology Studies, 1(4), 81–86.
Nugraha, A. M. S., & Hall, R. (2018). Late Cenozoic palaeogeography of Sulawesi, Indonesia. Palaeogeography, Palaeoclimatology, Palaeoecology, 490, 191–209. https://doi.org/10.1016/j.palaeo.2017.10.033
Öckinger, E., & Smith, H. G. (2007). Semi-natural grasslands as population sources for pollinating insects in agricultural landscapes. Journal of Applied Ecology, 44(1), 50–59. https://doi.org/10.1111/j.1365-2664.2006.01250.x
Panjaitan, R., Drescher, J., Buchori, D., Peggie, D., Harahap, I. S., Scheu, S., & Hidayat, P. (2020). Diversity of butterflies (Lepidoptera) across rainforest transformation systems in Jambi, Sumatra, Indonesia. Biodiversitas, 21(11), 5119–5127. https://doi.org/10.13057/biodiv/d211117
Pillay, R., Venter, M., Aragon-Osejo, J., González-del-Pliego, P., Hansen, A. J., Watson, J. E. M., & Venter, O. (2022). Tropical forests are home to over half of the world’s vertebrate species. Frontiers in Ecology and the Environment, 20(1), 10–15. https://doi.org/10.1002/fee.2420
Pollard, E. (1977). A METHOD FOR ASSESSING CHANGES IN THE ABUNDANCE OF BUTTERFLIES. Biology Conservation, 12, 115–134.
Preston, T. M., & Kim, K. (2016). Land cover changes associated with recent energy development in the Williston Basin; Northern Great Plains, USA. Science of the Total Environment, 566–567, 1511–1518. https://doi.org/10.1016/j.scitotenv.2016.06.038
Putri, A. A., Fahri, F., Annawaty, A., & Hamidy, A. (2019). Ecological investigations and diversity of amphibians in Lake Kalimpa’a, Lore Lindu National Park, Central Sulawesi. Journal of Natural History, 53(41–42), 2503–2516. https://doi.org/10.1080/00222933.2019.1705930
Pywell, R. F., Warman, E. A., Sparks, T. H., Greatorex-Davies, J. N., Walker, K. J., Meek, W. R., Carvell, C., Petit, S., & Firbank, L. G. (2004). Assessing habitat quality for butterflies on intensively managed arable farmland. Biological Conservation, 118(3), 313–325. https://doi.org/10.1016/j.biocon.2003.09.011
R Core Team. (2024). An Introduction to R Notes on R: A Programming Environment for Data Analysis and Graphics.
Rija, A. A. (2022). Local habitat characteristics determine butterfly diversity and community structure in a threatened Kihansi gorge forest, Southern Udzungwa Mountains, Tanzania. Ecological Processes, 11(1). https://doi.org/10.1186/s13717-022-00359-z
Rowe, K. C., Achmadi, A. S., Fabre, P. H., Schenk, J. J., Steppan, S. J., & Esselstyn, J. A. (2019). Oceanic islands of Wallacea as a source for dispersal and diversification of murine rodents. Journal of Biogeography, 46(12), 2752–2768. https://doi.org/10.1111/jbi.13720
Sagwe, R. N., Muya, S. M., & Maranga, R. (2015). Effects of land use patterns on the diversity and conservation status of butterflies in Kisii highlands, Kenya. Journal of Insect Conservation, 19(6), 1119–1127. https://doi.org/10.1007/s10841-015-9826-x
Sambhu, H., Northfield, T., Nankishore, A., Ansari, A., & Turton, S. (2017). Tropical Rainforest and Human-Modified Landscapes Support Unique Butterfly Communities That Differ in Abundance and Diversity. Environmental Entomology, 46(6), 1225–1234. https://doi.org/10.1093/ee/nvx129
Schleuning, M., Farwig, N., Peters, M. K., Bergsdorf, T., Bleher, B., Brandl, R., Dalitz, H., Fischer, G., Freund, W., Gikungu, M. W., Hagen, M., Garcia, F. H., Kagezi, G. H., Kaib, M., Kraemer, M., Lung, T., Naumann, C. M., Schaab, G., Templin, M., … Böhning-Gaese, K. (2011). Forest fragmentation and selective logging have inconsistent effects on multiple animal-mediated ecosystem processes in a tropical forest. PLoS ONE, 6(11), 1–2. https://doi.org/10.1371/journal.pone.0027785
Schulze, C. H., Steffan-Dewenter, I., & Tscharntke, T. (2004). Effects of Land Use on Butterfly Communities at the Rain Forest Margin: A Case Study from Central Sulawesi. In G. Gerold (Ed.), Land Use, Nature Conservation and the Stability of Rainforest Margins in Southeast Asia (pp. 281–297). Springer-Verlag Berlin Heidelberg.
Schulze, C. H., Steffan-Dewenter, I., & Tscharntke, T. (2013). Effects of Land Use on Butterfly Communities at the Rain Forest Margin: A Case Study from Central Sulawesi. In G. Gerold, M. Fremerey, & E. Guhardja (Eds.), Land Use, Nature Conservation and the Stability of Rainforest Margins in Southeast Asia (pp. 281–297). Heidelberg: Springer.
Steffan-Dewenter, I., Potts, S. G., Packer, L., & Ghazoul, J. (2005). Pollinator diversity and crop pollination services are at risk [3] (multiple letters). In Trends in Ecology and Evolution (Vol. 20, Issue 12, pp. 651–652). Elsevier Ltd. https://doi.org/10.1016/j.tree.2005.09.004
Stelbrink, B., Albrecht, C., Hall, R., & von Rintelen, T. (2012). The biogeography of sulawesi revisited: Is there evidence for a vicariant origin of taxa on Wallace’s “anomalous island”? Evolution, 66(7), 2252–2271. https://doi.org/10.1111/j.1558-5646.2012.01588.x
Stüning, D., Fahri, F., & Hafriani, R. (2017). Three new species of the genus Bracca Hübner (Geometridae, Ennominae, Boarmiini) from Sulawesi, with notes on the already described species. In Tinea (Vol. 24, Issue 1). https://www.researchgate.net/publication/322138008
Supriatna, J., Shekelle, M., Fuad, H. A. H., Winarni, N. L., Dwiyahreni, A. A., Farid, M., Mariati, S., Margules, C., Prakoso, B., & Zakaria, Z. (2020). Deforestation on the Indonesian island of Sulawesi and the loss of primate habitat. Global Ecology and Conservation, 24. https://doi.org/10.1016/j.gecco.2020.e01205
Sutton, S. L., & Collins, N. M. (1991). Insects and Tropical Forest Conservation. In N.M. Collins & J.A. Thomas (Eds.), The Conservation of Insects and their Habitats (pp. 405–424). Academic Press. https://doi.org/10.1016/b978-0-12-181370-3.50021-x
Suzuki, H., & Achmadi, A. S. (2015a). A comparative zoogeographic view on the animal biodiversity of Indonesia and Japan. In Tropical Peatland Ecosystems (pp. 213–226). Springer Japan. https://doi.org/10.1007/978-4-431-55681-7_13
Suzuki, H., & Achmadi, A. S. (2015b). A comparative zoogeographic view on the animal biodiversity of Indonesia and Japan. In Tropical Peatland Ecosystems (pp. 213–226). Springer Japan. https://doi.org/10.1007/978-4-431-55681-7_13
Thomas, J. A. (2005). Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1454), 339–357. https://doi.org/10.1098/rstb.2004.1585
Tiple, A. D., Khurad, A. M., & Dennis, R. L. H. (2007). Butterfly diversity in relation to a human-impact gradient on an Indian university campus. Nota Lepidopterologica, 30(1), 179–188. https://www.researchgate.net/publication/237178654
Torralba, M., Fagerholm, N., Burgess, P. J., Moreno, G., & Plieninger, T. (2016). Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agriculture, Ecosystems and Environment, 230, 150–161. https://doi.org/10.1016/j.agee.2016.06.002
Udawatta, R. P., Rankoth, L. M., & Jose, S. (2019). Agroforestry and biodiversity. Sustainability, 11(10), 1–22. https://doi.org/10.3390/su11102879
Uehara-Prado, M., Brown, K. S., & Freitas, A. V. L. (2007). Species richness, composition and abundance of fruit-feeding butterflies in the Brazilian Atlantic Forest: comparison between a fragmented and a continuous landscape. Global Ecology and Biogeography, 16(0), 43–54. https://doi.org/10.1111/j.1466-822x.2006.00267.x
van Dijk, L. J. A., Janz, N., Schäpers, A., Gamberale-Stille, G., & Carlsson, M. A. (2017). Experience-dependent mushroom body plasticity in butterflies: Consequences of search complexity and host range. Proceedings of the Royal Society B: Biological Sciences, 284(1866). https://doi.org/10.1098/rspb.2017.1594
Vane-Wright, R. I., & de Jong, R. (2003). The butterflies of Sulawesi : annotated checklist for a critical island fauna. Zoologische Verhandelingen, 343, 1–267.
Vitali, F., & Fahri, F. (2019). A taxonomic revision of the Acalolepta species from Sulawesi (Coleoptera, Cerambycidae). Baltic Journal of Coleopterology, 19(2), 167–177.
Vu, L. V., Bonebrake, T. C., Vu, M. Q., & Nguyen, N. T. (2015). Butterfly diversity and habitat variation in a disturbed forest in northern Vietnam. Pan-Pacific Entomologist, 91(1), 29–38. https://doi.org/10.3956/2014-91.1.029
Vu, L. Van, & Vu, C. Q. (2011). Diversity Pattern of Butterfly Communities (Lepidoptera, Papilionoidae) in Different Habitat Types in a Tropical Rain Forest of Southern Vietnam. ISRN Zoology, 2011, 1–8. https://doi.org/10.5402/2011/818545
Wale, M., & Abdella, S. (2021). Butterfly Diversity and Abundance in the Middle Afromontane Area of Northwestern Ethiopia. Psyche: Journal of Entomology, 2021. https://doi.org/10.1155/2021/8805366
Waltert, M., Langkau, M., Maertens, M., Hartel, M., Erasmi, S., & Muhlenberg, M. (2004). Predicting Losses of Bird Species from Deforestation in Central Sulawesi. In G. Gerold (Ed.), Land use, nature conservation and the stability of rainforest margins in Southeast Asia. Springer-Verlag Berlin Heidelberg.
Wanger, T. C., Brook, B. W., Evans, T., & Tscharntke, T. (2023). Pesticides reduce tropical amphibian and reptile diversity in agricultural landscapes in Indonesia. PeerJ, 11. https://doi.org/10.7717/peerj.15046
Warren, M. S., Maes, D., van Swaay, C. A. M., Goffart, P., van Dyck, H., Bourn, N. A. D., Wynhoff, I., Hoare, D., & Ellis, S. (2021). The decline of butterflies in Europe: Problems, significance, and possible solutions. In Proceedings of the National Academy of Sciences of the United States of America (Vol. 118, Issue 2). National Academy of Sciences. https://doi.org/10.1073/PNAS.2002551117
Wepprich, T., Adrion, J. R., Ries, L., Wiedmann, J., & Haddad, N. M. (2019). Butterfly abundance declines over 20 years of systematic monitoring in Ohio, USA. PLoS ONE, 14(7). https://doi.org/10.1371/journal.pone.0216270
Whitten, T., Henderson, G. S., & Mustafa, M. (1987). The Ecology of Sulawesi. In THE ECOLOGY OF INDONESIA: Vol. IV (pp. 1–754). Eric Oey.
Copyright (c) 2024 Fitrallisan Fitrallisan, Soleha R, Ria Rezki Yanti, Cipta Afrilianti, Elif Fitriana, Elijonnahdi Elijonnahdi, Agmal Qodri, Fahri Fahri
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Jurnal Biotek agree to the following terms: Authors retain the copyright and grant Universitas Islam Negeri Alauddin Makassar right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material) the work for any purpose, even commercially with an acknowledgement of the work's authorship and initial publication in Universitas Islam Negeri Alauddin Makassar. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in Universitas Islam Negeri Alauddin Makassar. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.