FIRE EARLY WARNING SYSTEM VIA CCTV CAMERA USING CONVOLUTIONAL NEURAL NETWORK

  • Safri Adam Politeknik Negeri Pontianak
    (ID)
  • Anggi Syahrul Kurniawan Politeknik Negeri Pontianak
    (ID)
  • Nurul Fadillah Politeknik Negeri Pontianak
    (ID)
Keywords: : Internet of Things (IoT),, deep learning, Convolutional Neural Network (CNN), fire detection system, CCTV, Informatics Engineering Laboratory

Abstract

At the Informatics Engineering Laboratory of Pontianak State Polytechnic, there is a fire detection system using smoke and heat sensors in certain rooms, while CCTV cameras are available throughout the room. Therefore, a fire detection system using CCTV cameras is proposed as an alternative fire detection tool to support sensor-based fire detection. Convolutional Neural Networks (CNNs) are a class of deep learning algorithms specifically designed for processing structured grid data, such as images. They are particularly effective in tasks related to image recognition and classification due to their ability to automatically learn spatial hierarchies of features from input images. This system works by processing video from CCTV cameras and classified using a Convolutional Neural Network (CNN) model that has been previously trained to recognize visual signs related to fire on video from CCTV cameras. Detected fire will be sent a notification via the user's Telegram application. These results show that the system works as expected with an average confidence level of 91.9% accuracy and 20.8% loss. The system was successfully developed into a fire detection application using the Convolutional Neural Network (CNN) model integrated with CCTV cameras and notification features via the Telegram application.

Downloads

Download data is not yet available.

References

Admin. (2022, January 4). (BERITA VIDEO) Ruang Mesin Polnep Pontianak Terbakar. (ninemedia) Dipetik May 18, 2023, dari https://www.ninemedia.id/2022/01/berita-video-ruang-mesin-polnep.html

Barak, H. (2020, Juni 14). Api Melalap Apartemen Grenfell London, 72 Orang Tewas. (LIPUTAN 6) Dipetik March 15, 2023, dari https://www.liputan6.com/global/read/4277948/14-6-2017-api-melalap-apartemen-grenfell-london-72-orang-tewas

Bayaoumi, S., Alsoubky, E., Almohsin, M., Altwaim, M., Alkaldi, M., & Alkahtani, M. (2013). A Real-time Fire Detection and NotificationSystem Based on Computer Vision. Fire Detection.

C Bhuvaneswari, M. K. (2022). Implementation of Intelligent Residential Fire Extinguisher System. 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT). Tirunelveli, India.

Damkar Banda Aceh. (2020, July 13). (Pemerintah Kota Banda Aceh) Dipetik March 15, 2023, dari https://damkar.bandaacehkota.go.id/2020/07/13/faktor-penyebab-kebakaran-dan-upaya-pencegahan-kebakaran/

Fitri Wibowo, S. S. (2022). Design and Implementation of IoT-Based Smart Laboratory Using ESP32 and Thingsboard to Improve Security and Safety in POLNEP Informatics Engineering Laboratory. Jurnal ELIT, 3(2), 13-21.

Fitri Wibowo, S. S. (2024). An IoT-Enabled Smart Energy Management System to Improve Energy Efficiency in University Laboratory. Sinkron: jurnal dan penelitian teknik informatika, 8(2), 1038-1046.

Giyanto, O. S., & Wahyat. (2022). Prototype Alat Pendeteksi Kebakaran Dengan Notifikasi Telegram. Seminar Nasional Industri dan Teknologi (SNIT, 260-29.

Gunawaardena, A., Ruwanthika, R., & Jayasekara, A. (2016). Computer Vision Based Fire Alarming System . 1.

Hendri, M., & Wahyuni, E. S. (2018). PERANCANGAN SISTEM DETEKSI ASAP DAN API MENGGUNAKAN PEMROSESAN CITRA.

Irsyad Dzikhrullah, Z. B. (2023). Rangkaian Rancang Bangun Alat Pendeteksi Kebakaran berdasarkan Asap dan Suhu pada Dapur Restoran Berbasis Arduino dan Internet of Things. Jurnal Teknologi Informasi dan Komunikasi, 7(3), 465-471.

Ramadah, F., Wibawa, P. D., & Rizal, A. (2022). Fire Detection System Using Image Processing on Webcam with Yolov3 Method. e-Proceeding of Engineering, 9, 228.

Shah, D. (2020, July 6). Early Fire detection system using deep learning and OpenCV. (towardsdatascience) Dipetik April 17, 2023, dari https://towardsdatascience.com/early-fire-detection-system-using-deep-learning-and-opencv-6cb60260d54a

Published
2024-12-13
Section
Volume 9 Nomor 2 Oktober Tahun 2024
Abstract viewed = 17 times