PEMODELAN KASUS COVID-19 DI INDONESIA MENGGUNAKAN ANALISIS SPASIAL DENGAN PENDEKATAN BAYESIAN

  • Aswi Universitas Negeri Makassar
    (ID)
  • Sukarna Jurusan Matematika, FMIPA UNM
    (ID)
  • Nurhilaliyah Jurusan Fisika, FMIPA Universitas Negeri Makassar
    (ID)

Abstract

Kasus terkonfirmasi positif Covid-19 dilaporkan pertama kali di Indonesia pada tanggal 2 Maret 2020. Hingga 30 September 2022, Indonesia memiliki 6.465.207 kasus. Berbagai penelitian mengenai pemodelan kasus Covid-19 telah dilakukan. Akan tetapi, penelitian menggunakan model Bayesian spasial Conditional Autoregressive (CAR) Leroux (BSCL) untuk kasus Covid-19 di 34 provinsi di Indonesia belum sepenuhnya dilakukan. Penelitian ini bertujuan untuk mendapatkan model BSCL terbaik dalam mengestimasi risiko relatif (RR) kasus Covid-19 di 34 provinsi di Indonesia dan menghasilkan peta tematik RR. Data agregat kasus positif Covid-19 (2 Maret 2020-30 September 2022) digunakan dalam penelitian ini. Selain itu, data jumlah penduduk di 34 provinsi di Indonesia tahun 2021 juga digunakan. Kriteria dalam memilih model terbaik adalah dengan melihat nilai residual dari Modifikasi Moran’s I (MMI) yang lebih dekat ke nol, nilai Watanabe Akaike Information Criteria yang terkecil serta nilai Deviance Information Criteria (DIC) terkecil. Hasil pengolahan data Covid-19 menunjukkan bahwa model BSCL dengan hyperprior IG (0,1;0,1). merupakan model terbaik dalam mengestimasi RR kasus Covid-19 di Indonesia. Sekitar 29,41% (10 provinsi) di Indonesia yang memiliki nilai RR kategori tinggi terjangkit Covid-19. Provinsi dengan RR tertinggi dan terendah masing-masing adalah Provinsi DKI Jakarta (RR=5,68) dan Provinsi Nusa Tenggara Barat (RR=0,28).

Author Biography

Aswi , Universitas Negeri Makassar

Statistika

References

[1] Peng, D. et al., "COVID-19 distributes socially in China: A Bayesian spatial analysis," PloS one, vol. 17, no. 4, pp. e0267001-e0267001, 2022.
[2] Whittle, R.S. and Diaz-Artiles, A., "An ecological study of socioeconomic predictors in detection of COVID-19 cases across neighborhoods in New York City," BMC medicine, vol. 18, no. 1, pp. 271-271, 2020.
[3] Aswi, A., Mauliyana, A., Tiro, M.A., and Bustan, M.N., "Relative Risk Of Coronavirus Disease (Covid-19) In South Sulawesi Province, Indonesia: Bayesian Spatial Modeling," Media Statistika, vol. 14, no. 2, pp. 158-169, 2022.
[4] Aswi, A., Muhammad Arif, T., Sudarmin, S., Sukarna, S., and Susanna, C., "The Interplay Between Clusters, Covariates, and Spatial Priors in Spatial Modelling of Covid-19 in South Sulawesi Province, Indonesia," Media Statistika, vol. 15, no. 1, pp. 48-59, 2022.
[5] Aswi, A., Sukarna, S., and Nurhilaliyah, "Pemetaan Risiko Relatif Kasus Stunting di Provinsi Sulawesi Selatan," Sainsmat: Jurnal Ilmiah Ilmu Pengetahuan Alam, vol. 11, no. 1, pp. 11-20, 2022.
[6] Aswi, A.S., Sukarna, "Pemodelan Spasial Bayesian dalam Menentukan Faktor yang Mempengaruhi Kejadian Stunting di Provinsi Sulawesi Selatan," Journal of Mathematics, Computations, and Statistics, vol. 5, no. 1, pp. 1-11, 2022.
[7] Aswi, A. and Sukarna, S., "Pemodelan Bayesian Spasial Conditional Autoregressive (CAR) Pada Kasus Demam Berdarah Dengue di Indonesia," Jurnal Matematika dan Statistika serta Aplikasinya, vol. 10, no. 1, pp. 32-39, 2022.
[8] Polo, G., Soler-Tovar, D., Villamil Jimenez, L.C., Benavides-Ortiz, E., and Mera Acosta, C., "Bayesian spatial modeling of COVID-19 case-fatality rate inequalities," Spatial and spatio-temporal epidemiology, vol. 41, 2022.
[9] Aswi, A. and Sukarna, S., "Factors Affecting the Covid-19 Risk in South Sulawesi Province, Indonesia: A Bayesian Spatial Model," Inferensi, vol. 5, no. 1, pp. 51-58, 2022.
[10] Tiro, M.A., Aswi, A., and Rais, Z., "Association of Population Density and Distance to the City with the Risks of COVID-19: A Bayesian Spatial Analysis," Journal of physics. Conference series, vol. 2123, no. 1, p. 12001, 2021.
[11] Cressie, N. and Wikle, C.K., Statistics for spatio-temporal data. John Wiley & Sons, 2015.
[12] Cressie, N.A.C., Statistics for spatial data Rev. ed. ed. New York: Wiley, 1993.
[13] Moran, P.A.P., "Notes on continuous stochastic phenomena," Biometrika, vol. 37, no. 1-2, p. 17, 1950.
[14] Carrijo, T.B. and Da Silva, A.R., "Modified Moran's I for Small Samples," Geographical Analysis, vol. 49, no. 4, pp. 451-467, 2017.
[15] Aswi, A., Cramb, S., Duncan, E., and Mengersen, K., "Detecting Spatial Autocorrelation for a Small Number of Areas: a practical example," Journal of physics. Conference series, vol. 1899, no. 1, p. 12098, 2021.
[16] Austin, P.C., Brunner, L.J., SM, H.M., and Janet, E., "Bayeswatch: an overview of Bayesian statistics," Journal of Evaluation in Clinical Practice, vol. 8, no. 2, pp. 277-286, 2002.
[17] Ntzoufras, I., Bayesian modeling using WinBUGS. John Wiley & Sons, 2011.
[18] Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B., Bayesian Data Analysis, 3rd ed. Chapman & Hall/CRC Boca Raton, FL, USA, 2014, p. 607.
[19] Winardi, W. et al., Statistik Indonesia 2021. Jakarta: Badan Pusat Statistik Indonesia, 2021, p. 758.
[20] Leroux, B.G., Lei, X., and Breslow, N., "Estimation of Disease Rates in Small Areas: A new Mixed Model for Spatial Dependence," Statistical Models in Epidemiology, the Environment, and Clinical Trials, vol. 116, pp. 179-191, 2000.
[21] R Core Team, "R: A language and environment for statistical computing," ed. Vienna, Austria: R Foundation for Statistical Computing, 2019.
[22] Lee, D., "CARBayes: An R Package for Spatial Areal Unit Modelling with Conditional Autoregressive Priors," Journal of statistical software, vol. 55, no. 1, pp. 1-24, 2013.
Published
2022-11-30
How to Cite
[1]
Aswi, Sukarna, and Nurhilaliyah, “PEMODELAN KASUS COVID-19 DI INDONESIA MENGGUNAKAN ANALISIS SPASIAL DENGAN PENDEKATAN BAYESIAN”, MSA, vol. 10, no. 2, pp. 40-47, Nov. 2022.
Abstract viewed = 218 times