Model Linier Diperumum Untuk Memodelkan Durasi Curah Hujan Tinggi di Sulawesi SelatanSelatan

  • Ahmad Husain Universitas Patompo
    (ID)
  • Isma Muthahharah Universitas Patompo
    (ID)
  • Amran Universitas Hasanuddin
    (ID)

Abstract

This study aims to model the duration of high rainfall in South Sulawesi which causes hydrological disasters in January each year. In this study, climate data such as rainfall, wind speed, relative humidity, sunshine and air temperature were recapitulated and modeled using a generalized linear model. The aim is to predict the relevant variables influencing the increase in the duration of high intensity rains in South Sulawesi. In the parameter estimation process, the generalized linear model is added with a random component in the form of spatial random effects and estimated using a Bayesian approach. The results of the analysis produce which climate variables are relevant to modeling the increase in high rainy days in January, as well as the distance of influence of these relevant variables.

References

[1] Fenani, A. 2004. “Kajian Meterorologis Hubungan antara Hujan Harian dan Unsur-unsur Hujan Studi Kasus di Satsiun Metereologi Adisucipto”. Majalag Geografi Indonesia, Vol.18 No 2: 69-79.
[2] Nugroho, S. P. (2019, Januari). “Banjir Landa 53 Kecamatan di Sulawesi Selatan, 8 Tewas, 4 Hilang dan Ribuan Warga Mengungsi”. BNPB. Diakses dari https://bnpb.go.id/berita
[3] Haibin, L. 2008. “Spatial generalized linier mixed models of eletricpower hurricanes and ice storms”.Reability Engineering and System Safety: 875-890.
[4] Nelder, M. 1989. “Generalized Linier Models second Edition”, Chapman and Hall, United Stated of America.
[5] Santri, D, dkk. 2020.”Statistical Downscaling Regresi Kuantil LASSO dan Komponen Utama Untuk Pendugaan Curah Hujan Ekstrim”. Mathematics and Applications Journal Vol 2 No 1: 47-57.
[6] Lekdee, K, dkk. 2013. “Generalized Linier Mixed Models With Spatial Random Effect For Spatio-Temporal Data: An Application to Dengue Fever Mapping”. Journal of Mathematics and Statistics Vol 9 No 2: 137-143.
[7] Torabi, M. 2015. “Likeklihood Inference for Spatial Generalized Linier Mixed Models.” Comunications Statistics-Simulation and Computation: 1692-1701.
[8] Husain, A, dkk. 2023. “Pemodelan Data Angka Kematian Bayi Menggunakan Regresi Robust”. Jurnal Sains, Teknologi dan Komputer Vol 1 No 1: 1-7.
[9] Tiao, B. 1973. “Bayesian Inference In Statistical Analysis”. Philippinnes: Addidion-Weselye Publishin Company.
[10] Terenin, A, dkk. 2017. “A Noninformative Prior on a Space of Distribution Functions”. Entropy, 19: 1-12.
[11] Irwanti, K. I, dkk. 2012. “Pembangkitan Sampel Random Menggunakan Algoritma Metropolis Hastings”. Jurnal Gaussian Vol 1 No 1: 135-146.
[12] Spiegelhalter, D. J, dkk. 2002. “Bayesian Measures of Model Complexity and Fit”. Journal of the Royal Statistical Society, Vol 64 No 4: 583-616.
[13] Finley, A. S, dkk. 2015. “spBayes for large univariate and multivariate point-referenced spatio-temporal data models”. Journal of Statistical Software Vol 63: 1-28.
[14] Lee, J, dkk. 2001. “Statistical Analysis With Arcview GIS”, John Willley and Sons, Inc., United Stated of America
Published
2023-08-27
How to Cite
[1]
A. Husain, Isma Muthahharah, and Amran, “Model Linier Diperumum Untuk Memodelkan Durasi Curah Hujan Tinggi di Sulawesi SelatanSelatan”, MSA, vol. 11, no. 2, pp. 23-29, Aug. 2023.
Abstract viewed = 116 times