Autoregressive Spatial Modeling (SAR) for Poverty Percentage in West Java in 2021

  • Muhammad Saifudin Nur
    (ID)
  • Prizka Rismawati Arum
    (ID)
  • Fenny Amalia Adani
    (ID)
  • Cintadea Amanda Dwi Aryani
    (ID)
  • Aqsal Maulana Mahasiswa
    (ID)
Keywords: SAR, Poverty, Regression, Spatial Autoregressive

Abstract

Spatial Autoregressive Model (SAR) is a spatial regression model that has a spatial effect on the dependent variable. Spatial data refers to data that contains geographic information or regional location. Spatial analysis process consisting of visualization, exploration and modeling. This study uses the response variable (y), namely poverty, and 5 predictor variables, namely AMH (x1), open response rate (x2), GRDP (x3), participation rate (APS) (x4), and life expectancy (x5). A significant factor influencing West Java's poverty is GRDP (x3). The best model for the data in this study is the SAR because the R square value in the spatial regression is greater than the classical regression of 62%. There is no significant independent variable in the classical regression model but after modeling using SAR there is one significant variable which means it gives added value to the SAR regression model as the best model.

References

[1] E. Adawiyah, Kemiskinan_Dan_Penyebabnya, 1 (2020) 43–50.
[2] W. Alwi, I. Rayyan, Nurfadilah, Analisis Regresi Data Panel pada Faktor-Faktor yang Mempengaruhi Tingkat Kemiskinan Provinsi Sulawesi Selatan Tahun 2011-2015, J. MSA. 6 (2018) 1–15.
[3] S.Z. Fedi, Analisis Rumah Tangga Miskin Di Kabupaten Lebong, J. MSA ( Mat. Dan Stat. Serta Apl. ). 9 (2021). https://doi.org/10.24252/msa.v9i2.18894.
[4] N. Zuhdiyaty, D. Kaluge, Analisis Faktor - Faktor Yang Mempengaruhi Kemiskinan Di Indonesia Selama Lima Tahun Terakhir, J. Ilm. Bisnis Dan Ekon. Asia. 11 (2018) 27–31. https://doi.org/10.32812/jibeka.v11i2.42.
[5] T.C. Leasiwal, Determinan dan karakteristik kemiskinan di Provinsi Maluku, Cita Ekon. J. Ekon. VII (2013) 1–26.
[6] A.M. Ginting, Rasbin, Pengaruh pertumbuhan ekonomi terhadap tingkat kemiskinan di Indonesia sebelum dan setelah krisis, J. Ekon. Kebijak. Publik. 2 (2010) 279–312.
[7] M.A. Jundi, D. Poerwono, Analisis Faktor Yang Mempengaruhi Tingkat Kemiskinan Provinsi-Provinsi di Indonesia, Skripsi. 1 (2014) 1–88.
[8] Soemartini, Analisis Regresi Data Panel Dalam Pemodelan Tingkat Kemsikinan Penduduk di Jawa Barat, (2016) 8624535.
[9] T.A. Taqiyyuddin, M. Irfan, Faktor Penyebab Kemiskinan di Provinsi Jawa Barat Menggunakan Spatial Autoregressive Quantile Regression, J. Sains Mat. Dan Stat. 8 (2023) 59–69. http://ejournal.uin-suska.ac.id/index.php/JSMS/article/view/13185%0Ahttp://ejournal.uin-suska.ac.id/index.php/JSMS/article/viewFile/13185/7972.
[10] R. Tasyin, Identifikasi Faktor-Faktor Yang Berpengaruh Terhadap Laju Pertumbuhan Penduduk Kota Pekanbaru Menggunakan Model Spasial Autoregresif, J. MSA ( Mat. Dan Stat. Serta Apl. ). 8 (2020) 58. https://doi.org/10.24252/msa.v8i2.15973.
[11] N. Rohmawati, H. Wijayanto, A.H. Wigena, Ensemble spatial autoregressive model on the poverty data in java, Appl. Math. Sci. 9 (2015) 2103–2110. https://doi.org/10.12988/ams.2015.4121034.
[12] W. Pramesti, A. Suharsono, Spatial autoregressive model for modeling of human development index in East Java province, Int. J. Mech. Eng. Technol. 10 (2019) 626–632.
[13] D.R.. Saputro., R.Y. Muhsinin, P. Widyaningsih, Sulistyaningsih, Spatial autoregressive with a spatial autoregressive error term model and its parameter estimation with two-stage generalized spatial least square procedure, J. Phys. Conf. Ser. 1217 (2019). https://doi.org/10.1088/1742-6596/1217/1/012104.
[14] S.D. Permai, R. Jauri, A. Chowanda, Spatial autoregressive (SAR) model for average expenditure of Papua Province, Procedia Comput. Sci. 157 (2019) 537–542. https://doi.org/10.1016/j.procs.2019.09.011.
[15] V.D. Laswinia, Analisis Pola Hubungan Persentase Penduduk Relationship Analysis Between Low-Lived Population Percentage and Environmental , Economic , and Social Factors in Indonesia Using Spatial Regression, (2016).
[16] P. Haznam, K. Abdul, Pemodelan Produk Domestik Regional Bruto Provinsi Jawa Tengah dengan Pendekatan Spatial Autoregressive Confused (SAC), Semin. Nas. Pendidikan, Sains Dan Teknol. Fak. Mat. Dan Ilmu Pengetah. Alam Univ. Muhammadiyah Semarang. (2017) 120–126.
[17] D.H. Juniar, M. Ulinnuha, Pemodelan Spatial Autoregressive (SAR) untuk Presentase Penduduk Miskin di Jawa Barat Tahun 2018, Riset, Inovasi, Reson. Dan Apl. Stat. (2021) 67–76.
[18] H.P. Amalia, Yundari, Helmi, Metode Maximum Likelihood dalam Penaksiran Model Spatial Autoregressive (Studi Kasus: Indeks Pembangunan Manusia Seluruh Provinsi di Indonesia pada Tahun 2016), Bimaster Bul. Ilm. Mat. Stat. Dan Ter. 8 (2019) 437–446. https://doi.org/10.26418/bbimst.v8i3.33585.
[19] Y.S. Edi, Quasi-Maximum Likelihood for Spatial Panel Regression (Case Study: Economic Growth of Municipalities in East Java Province 2007 - 2009), Institut Teknologi Sepuluh Nopember, 2012.
Published
2024-06-10
How to Cite
[1]
Muhammad Saifudin Nur, Prizka Rismawati Arum, Fenny Amalia Adani, Cintadea Amanda Dwi Aryani, and Aqsal Maulana, “Autoregressive Spatial Modeling (SAR) for Poverty Percentage in West Java in 2021”, MSA, vol. 12, no. 1, pp. 8-14, Jun. 2024.
Abstract viewed = 133 times