Penerapan Regresi Weibull pada Data Pasien Data Pasien Penderita Kanker Serviks RSUD Kota Makassar Tahun 2017-2019

  • Dwi Agustin Nuriani Sirodj Universitas Islam Indonesia
    (ID)
  • Aulia Khairunnisa Universitas Islam Bandung
    (ID)

Abstract

In survival analysis, the commonly used method is cox proportional hazard regression, but if the data to be studied meet the assumptions for Weibull regression, Weibull regression analysis will provide better results. Weibull regression is a regression model developed from the Weibull distribution of 2 parameters, namely scale parameters and form parameters that can be expressed in regression parameters. Weibull regression models include the Weibull survival regression model, the Weibull hazard regression model and the mean model. The purpose of this study was to determine the shape of the model between the condition of cervical cancer patients and survival time using the Weibull regression model and to find out what factors affect survival time until cervical cancer patients are declared cured. Parameter estimation is done using Maximum Likelihood Estimation (MLE) but the assessment results are not closed form so they are overcome by Newton-Raphson iteration. The Weibull regression model was applied to cervical cancer patient data at RSUD Kota Makassar in 2017-2019. Based on the research conducted, it can be concluded that the factors that affect the cure of cervical cancer patients, namely the stage with the interpretation of cervical cancer patients in stage 2, have a risk of experiencing a failure rate of 4.4309 times that of cervical cancer patients in stage 1. While cervical cancer patients in stage 3 have a risk of failure rate of 8.4554 times that of cervical cancer patients in stage 1.

References

[1] Collet, D. (2003). Modelling Survival Data In Medical Research, Second Edition. London: Chapman and Hall.
[2] Kleinbaum, D. G., (1996). Survival analysis : A Self Learning Text, Third Edition. New York: Springer-Verlag.
[3] Rinne, H. (2009). The Weibull Distribution A Handbook. CRC Press Taylor and Francis Group.
[4] Lawless, J. F. (2003). Statistical Models and Methods for lifetime Data, Second Edition. New Jersey: John Wiley & Sons, Inc.
[5] Musfirah. (2018). Faktor Risiko Kejadian Kanker Serviks Di Rsup Dr. Wahidin Sudirohusodo Makassar. Jurnal Kesehatan Masyarakat. 4(1), 1-8.
[6] Otaya, L. G., (2016). Distribusi Probabilitas Weibull dan Aplikasinya (Pada Persoalan Keandalan (Reliability) dan Analisis Rawatan (Maintainability)). Jurnal Menejemen Pendidikan Islam. 4(2): 44-66.
[7] Agresti, A. (2002). Categorical Data Analysis, Second Edition. New Jersey: John Wiley & Sons, Inc.
[8] Khuri A. I. (2003). Advanced Calculus with Applications in Statistics, Second Edition. New Jersey: John Wiley & Sons, Inc.
[9] Suyitno. (2017). Penaksiran Parameter dan Pengujian Hipotesis Model Regresi Weibull Univariat. Jurnal Eksponensial, 8(2), 179-184.
[10] Hasa, Nini Karnihayani. (2022). Analisis Bayesian Survival Weibull Untuk Menentukan Faktor Yang Mempengaruhi Laju Kesembuhan Pasien Rawat Inap Kanker Serviks di RSDU Kota Makassar. Journal of Statistics and Its Application on Teaching and Research, 4(1), 1-8.
Published
2024-06-10
How to Cite
[1]
Dwi Agustin Nuriani Sirodj and Aulia Khairunnisa, “Penerapan Regresi Weibull pada Data Pasien Data Pasien Penderita Kanker Serviks RSUD Kota Makassar Tahun 2017-2019”, MSA, vol. 12, no. 1, pp. 33-45, Jun. 2024.
Abstract viewed = 130 times