Rainfall Forecasting as a Disaster Mitigation Effort Using Seasonal Autoregressive Integrated Moving Average
Abstract
Rainfall prediction is important in disaster mitigation to reduce impacts such as drought, flood, and landslide. Rainfall data that has a seasonal pattern requires an appropriate forecasting method, one of which is SARIMA. This study predicts rainfall at the Deli Serdang Climatology Station, North Sumatra, based on monthly observation data for 2018–2023, showing a seasonal pattern with a 12-month cycle. The best model obtained is SARIMA (0,0,1) (0,0,1)12 with a MAPE of 19.5%, indicating a prediction accuracy of 80.5%. The forecasting results indicate a decrease in rainfall in the first semester of 2024, which is in the medium rainfall category. These findings can support disaster risk mitigation strategies and natural resource management planning related to climate change. The SARIMA model also has the potential to be applied in further climatology studies.
References
[2] D. Setiawan, “Analisis Curah Hujan di Indonesia untuk Memetakan Daerah Potensi Banjir dan Tanah Longsor dengan Metode Cluster Fuzzy C-Means dan Singular Value Decompotition (SVD),” Eng. Math. Comput. Sci. J., vol. 3, no. 3, pp. 115–120, 2021, doi: 10.21512/emacsjournal.v3i3.7428.
[3] A. Rosyida, M. Aziz, Y. Firmansyah, T. Setiawan, K. P. Pangesti, and F. Kakanur, Buku Data Bencana Indonesia 2023, vol. 3. Pusat Data Informasi dan Komunikasi Kebencanaan BNPB, 2024.
[4] M. R. Ahdian, A. Sangrila, A. R. Al Madani, N. Ismatilah, S. A. Auliyazhafira, and G. Darmawan, “Peramalan Deret Waktu Curah Hujan di Kota Cirebon Menggunakan ARFIMA,” Innov. J. Soc. Sci. Res., vol. 4, no. 1, pp. 1566–1582, 2024.
[5] A. S. Praja, H. Harsa, E. E. S. Makmur, R. S. S. Sudewi, and D. S. Permana, “Performa Prediksi Curah Hujan Menggunakan Arima Musiman Pada Tiga Tipe Pola Hujan Di Indonesia,” Semin. Nas. Sains Atmos., no. July, pp. 77–83, 2020.
[6] D. I. Purnama, “Peramalan Curah Hujan Di Kabupaten Parigi Moutong Menggunakan Model Seasonal Autoregressive Integrated Moving Average (SARIMA),” J. Ilm. Mat. Dan Terap., vol. 18, no. 2, pp. 136–147, 2021, doi: 10.22487/2540766x.2021.v18.i2.15652.
[7] M. I. Hakiqi, A. Firmansyah, and R. Arisanti, “Peramalan Curah Hujan di Kota Bandung dengan Metode SARIMA (Seasonal Autoregressive Integrated Moving Average),” Inferensi, vol. 1, no. 1, p. 23, 2023, doi: 10.12962/j27213862.v1i1.19119.
[8] D. Wahyudi and I. V. Paputungan, “Pemodelan Curah Hujan Pada Kota Bengkulu Menggunakan Seasonal Autoregressive Integrated Moving Average (Sarima),” Automata, vol. 3, no. 2, 2022.
[9] S. Fajri, E. Kurniati, and D. Suhaedi, “Pemodelan Curah Hujan Kota Bandung Menggunakan Model Seasonal Autoregressive Integrated Moving Average pada Data Time Series dengan Bantuan Minitab,” Bandung Conf. Ser. Math., vol. 3, no. 1, pp. 7–17, 2023, doi: 10.29313/bcsm.v3i1.6121.
[10] W. J. Pattipeilohy, A. Amalia, and R. Rakhim, “Verifikasi Prakiraan Curah Hujan Bulanan Menggunakan ECMWF Dan Arima Di Papua Barat,” J. Widya Climago, vol. 3, no. 2, 2021.
[11] W. Alwi, Adiatma, and Hafsari, “Peramalan Produksi Padi Menggunakan Metode Sarima Di Kabupaten Bone,” J. MSA ( Mat. dan Stat. serta Apl., vol. 11, no. 2, pp. 16–22, 2023, doi: 10.24252/msa.v11i2.36163.
[12] V. B. Sitorus, S. Wahyuningsih, and M. N. Hayati, “Peramalan dengan Metode Seasonal Autoregressive Integrated Moving Average (SARIMA) di Bidang Ekonomi (Studi Kasus: Inflasi Indonesia),” EKSPONENSIAL, vol. 8, no. 1, 2017.
[13] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series Analysis: Forecasting and Control, 5th ed. Hoboken, New Jersey: John Wiley & Sons, Inc, 2016.
[14] S. Makridakis, S. C. Wheelwright, and V. E. McGee, Forecasting Methods and Applications. John Wiley & Sons, 1983.
[15] R. Handayani, S. Wahyuningsih, and D. Yuniarti, “Pemodelan Generalized Space Time Autoregressive (GSTAR) Pada Data Inflasi di Kota Samarinda dan Kota Balikpapan,” J. EKSPONENSIAL, vol. 9, no. 2, 2018.
[16] S. Makridakis, S. C. Wheelwright, and V. E. McGee, Forecasting: Methods and Applications, 2nd ed. Canada: John Wiley & Sons, 1983.
Copyright (c) 2025 Jurnal MSA ( Matematika dan Statistika serta Aplikasinya)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.