MODELING LARGE-ANGLE PENDULUM OSCILLATIONS WITH QUADRATIC DAMPING AND DAMPING ON THE STRING

  • Defrianto Pratama Politeknik Negeri Bandung
    (ID)
Keywords: Real pendulum; Damped oscillations; Quadratic damping; Runge Kutta.

Abstract

This study aims to find the right theoretical approach for real pendulum oscillations with large angles and include the air damping factor. Video of real pendulum oscillations were analyzed using Tracker software, to obtain experimental data. The real pendulum motion equation is modeled by a second order nonlinear differential equation by including linear damping, quadratic damping and damping on the pendulum string. The pendulum motion equation is solved by the 4th Order Runge-Kutta method then the results are compared with the experimental data. Modeling by considering quadratic damping and string damping is closer to the real phenomenon of pendulum motion than only considering linear damping.

Downloads

Download data is not yet available.

References

Albalawi, W., Salas, A. H., El-Tantawy, S. A., & Youssef, A. A. A. R. (2021). Approximate analytical and numerical solutions to the damped pendulum oscillator: Newton–
Ganiev, R. F., Ganiev, S. R., Kasilov, V. P., & Pustovgar, A. P. (2015). Wave technology in mechanical engineering: industrial applications of wave and oscillation phenomena. John Wiley & Sons.
Hafez, Y. (2022). Solving the nonlinear pendulum equation with friction and drag forces using the Finite Element Method. The Romanian Journal of Technical Sciences. Applied Mechanics., 67(2), 145-145. http://rjts-applied-mechanics.ro/index.php/rjts/article/view/344
Hauko, R., & Repnik, R. (2019). Damped harmonic oscillation: Linear or quadratic drag force?. American Journal of Physics, 87(11), 910-914. https://doi.org/10.1119/1.5124978
Hernández, A. G. (2019, August). Using a large amplitude pendulum in a learning cycle strategy. In Journal of Physics: Conference Series (Vol. 1286, No. 1, p. 012036). IOP Publishing. https://doi.org/10.1088/1742-6596/1286/1/012036
Kundu, P. K., Cohen, I. M., & Dowling, D. R. (2015). Fluid mechanics. Academic press.
Li, D., Liu, L., & Zhou, S. (2020). Exploration of large pendulum oscillations and damping using a smartphone. The Physics Teacher, 58(9), 634-636. https://doi.org/10.1119/10.0002729
Lupi, F., Niemann, H. J., & Höffer, R. (2018). Aerodynamic damping model in vortex-induced vibrations for wind engineering applications. Journal of Wind Engineering and Industrial Aerodynamics, 174, 281-295. https://doi.org/10.1016/j.jweia.2018.01.006
Raphson and moving boundary methods. Journal of Taibah University for Science, 15(1), 479-485. https://doi.org/10.1080/16583655.2021.1989739
Rizki, I. A., Citra, N. F., Saphira, H. V., Setyarsih, W., & Putri, N. P. (2021). Eksperimen dan Respon Mahasiswa Terhadap Praktikum Fisika Non-Laboratorium Menggunakan Aplikasi Tracker Video Analysis Untuk Percobaan Kinematika Gerak. Journal of Teaching and Learning Physics, 6(2), 77-89. https://doi.org/10.15575/jotalp.v6i2.12640
Sawkmie, I. S., & Mahato, M. C. (2019). Free oscillations of a damped simple pendulum: An analog simulation experiment. The Physics Educator, 1(04), 1950015(1)- 1950015(10). https://doi.org/10.1142/S266133951950015X
Published
2022-08-01
How to Cite
Pratama, D. (2022). MODELING LARGE-ANGLE PENDULUM OSCILLATIONS WITH QUADRATIC DAMPING AND DAMPING ON THE STRING . JPF (Jurnal Pendidikan Fisika) Universitas Islam Negeri Alauddin Makassar, 10(2), 101-106. https://doi.org/10.24252/jpf.v10i2.29860
Section
Articles
Abstract viewed = 357 times