Respon Pemberian Karbon Aktif Arang Sekam terhadap Pelepasan Gas Amonia pada Feses Ayam Ras Petelur

  • U. Sara Program Studi Penyuluhan Peternakan dan Kesejahteraan Hewan, Politeknik Pembangunan Pertanian Gowa
    (ID)
  • M. Azhar Program Studi Budidaya Ternak, Politeknik Pembangunan Pertanian Gowa
    (ID)
  • T. L. Aulyani Program Studi Budidaya Ternak, Politeknik Pembangunan Pertanian Gowa
    (ID)
  • S. Faradila Program Studi Budidaya Ternak, Politeknik Pembangunan Pertanian Gowa
    (ID)
Keywords: activated carbon, ammonia gas, laying hens

Abstract

This study aims to determine the response of activated carbon from rice husk charcoal to the release of ammonia gas in the manure of laying hens. This study used 12 laying hens of the Isa Brown strain aged 70 weeks. Manure collection is done in the morning. The manure of laying hens was collected as much as 50 grams for each treatment. The manure that has been collected is then sprinkled with activated carbon from husk charcoal. Manure that has been sprinkled with activated carbon is stored for 7 days at room temperature. The administration of activated carbon charcoal husk was divided into 4 treatments with 3 replications. The first treatment was 50 g of manure + without giving rice husk charcoal (Control), the second treatment was 50 g of manure + 10% activated carbon (rice husk charcoal), the third treatment was 50 g of manure + 20% activated carbon (rice husk charcoal), and the fourth treatment was 50 g manure + 30% activated carbon (rice husk charcoal). The results showed that the administration of activated carbon husk charcoal at different concentrations was able to increase the temperature and reduce the levels of ammonia, especially in the treatment of 10% activated carbon of husk charcoal), but had not been able to change the shrinkage and pH of manure. The recommended treatment is activated carbon charcoal husk treatment at a concentration of 10%.

Downloads

Download data is not yet available.

References

Bai, W., Qian, M., Li, Q., Atkinson, S., Tang, B., Zhu, Y., & Wang, J. 2021. Rice husk-based adsorbents for removing ammonia: Kinetics, thermodynamics and adsorption mechanism. Journal of Environmental Chemical Engineering, 9(4), 105793. https://doi.org/10.1016/j.jece.2021.105793

Bijang, C., Tanasale, M. F. J. D. P., Sri, D., Tahril, T., & Azis, T. 2022. Synthesis and characterization of activated carbon from waste compedak fruit (artocarpus champeden) activated h3po4 as adsorbent of methylene blue. Jurnal Akademika Kimia, 11(1), 56–63. https://doi.org/10.22487/j24775185.2022.v11.i1.pp56-63

Cobellis, G., Trabalza-Marinucci, M., Marcotullio, M. C., & Yu, Z. 2016. Evaluation of different essential oils in modulating methane and ammonia production, rumen fermentation, and rumen bacteria in vitro. Animal Feed Science and Technology, 215, 25–36. https://doi.org/10.1016/j.anifeedsci.2016.02.008

Eglite, S., Ilgaza, A., & Butka, M. 2021. Reduction of ammonia emissions by applying probiotics on litter in a commercial breeding poultry house. Agronomy Research, 19(Special Issue 2), 1015–1022. https://doi.org/10.15159/AR.21.069

Eid, Y. Z., Amber, K. A., Hassan, M. S., Hassan, R. A., & Abo-Ouf, A. M. 2022. Efficacy of Aluminum Sulfate Addition to Poultry Litter on Productive Performance of Laying Hens, Ammonia Emissions, and Litter Quality. Revista Brasileira de Ciencia Avicola, 24(2). https://doi.org/10.1590/1806-9061-2021-1516

Goyal, S., & Chauhan, R. P. 2021. Ammonia gas sensing response of gamma-irradiated CdTe thin films. Materials Science in Semiconductor Processing, 121(August 2020), 105394. https://doi.org/10.1016/j.mssp.2020.105394

Gutarowska, B., Matusiak, K., Borowski, S., Rajkowska, A., & Brycki, B. 2014. Removal of odorous compounds from poultry manure by microorganisms on perlite - bentonite carrier. Journal of Environmental Management, 141, 70–76. https://doi.org/10.1016/j.jenvman.2014.03.017

Hagenkamp-Korth, F., Haeussermann, A., Hartung, E., & Reinhardt-Hanisch, A. 2015. Reduction of ammonia emissions from dairy manure using novel urease inhibitor formulations under laboratory conditions. Biosystems Engineering, 130, 43–51. https://doi.org/10.1016/j.biosystemseng.2014.12.002

Han, J. G., Zhao, G., Dou, L. S., Jing, Y. J., & Zhu, Y. L. 2013. Adsorption of ammonium nitrogen in water by rice husk charcoal: A simulation study. Advanced Materials Research, 781–784, 2063–2066. https://doi.org/10.4028/www.scientific.net/AMR.781-784.2063

Han, Z., Sun, D., Wang, H., Li, R., Bao, Z., & Qi, F. 2018. Effects of ambient temperature and aeration frequency on emissions of ammonia and greenhouse gases from a sewage sludge aerobic composting plant. Bioresource Technology, 270, 457–466. https://doi.org/10.1016/j.biortech.2018.09.048

Jiang, C., Cui, S., Han, Q., Li, P., Zhang, Q., Song, J., & Li, M. 2019. Study on application of activated carbon in water treatment. IOP Conference Series: Earth and Environmental Science, 237(2), 8–13. https://doi.org/10.1088/1755-1315/237/2/022049

Mahardika, C., Pello, W. Y., & Nenomnanu, Y. 2022. Pengaruh penambahan adsorben dan kultur bakteri terhadap karakteristik feses ayam ras pedaging. Partner, 27(1), 1723. https://doi.org/10.35726/jp.v27i1.559

Managanta, A. A., Sondakh, T. D., Pangemanan, E. F., Doodoh, B., Tuju, T. D. J., Tumbelaka, S., Sondakh, M. F. L., Supit, P. C. H., Loho, E., Tumewu, P., & Rantung, M. R. (2023). International Journal of Multicultural and Multireligious Understanding Application of Rice Husk Charcoal and Water Hyacinth Bokashi in Imperata Soil on the Growth and Yield of Sweet Corn. 440–444.

Marang, E. A. F., Mahfudz, L. D., Sarjana, T. A., & Setyaningrum, S. 2019. Kualitas dan kadar amonia litter akibat penambahan sinbiotik dalam ransum ayam broiler. Jurnal Peternakan Indonesia (Indonesian Journal of Animal Science), 21(3), 303. https://doi.org/10.25077/jpi.21.3.303-310.2019

Masterson, B. 2013. Conway’s Microdiffusion Analysis: eighty years on and still counting! Biochemical Journal, 34–39.

Mažeikienė, R., & Bleizgys, R. 2022. Use of bio-preparations to reduce ammonia emissions from cattle farming: effects of manure storage time and ventilation intensity. Agriculture (Switzerland), 12(10). https://doi.org/10.3390/agriculture12101626

McIlroy, J. P., McGeough, K. L., Laughlin, R. J., & Carolan, R. 2019. Abatement of ammonia emissions from dairy cow house concrete floor surfaces through additive application. Biosystems Engineering, 188, 320–330. https://doi.org/10.1016/j.biosystemseng.2019.10.016

Mituniewicz, T., Piotrowska, J., Sowińska, J., Mituniewicz, E., Iwańczuk-Czernik, K., & Wójcik, A. 2016. Effect of calcium peroxide (CaO2) addition to poultry litter on the parameters of its physicochemical, microbiological and fertilising quality. Journal of Elementology, 21(4), 1327–1341. https://doi.org/10.5601/jelem.2016.21.1.1056

Mohammed-Nour, A., Al-Sewailem, M., & El-Naggar, A. H. 2019a. The influence of alkalization and temperature on Ammonia recovery from cow manure and the chemical properties of the effluents. Sustainability (Switzerland), 11(8). https://doi.org/10.3390/su11082441

Mohammed-Nour, A., Al-Sewailem, M., & El-Naggar, A. H. 2019b. The influence of alkalization and temperature on Ammonia recovery from cow manure and the chemical properties of the effluents. Sustainability (Switzerland), 11(8). https://doi.org/10.3390/su11082441

Moore, P. A., Li, H., Burns, R., Miles, D., Maguire, R., Ogejo, J., Reiter, M. S., Buser, M. D., & Trabue, S. 2018. Development and testing of the ars air scrubber: a device for reducing ammonia emissions from animal rearing facilities. Frontiers in Sustainable Food Systems, 2(June), 1–10. https://doi.org/10.3389/fsufs.2018.00023

Mostafa, E., Selders, A., & Buescher, W. 2019. Aeration of pig slurry affects ammonia and greenhouse gases emissions. International Journal of Environmental Science and Technology, 16(11), 7327–7338. https://doi.org/10.1007/s13762-019-02388-2

Naujokienė, V., Bagdonienė, I., Bleizgys, R., & Rubežius, M. 2021. A biotreatment effect on dynamics of cattle manure composition and reduction of ammonia emissions from agriculture. Agriculture (Switzerland), 11(4). https://doi.org/10.3390/agriculture11040303

Pan, B., Lam, S. K., Mosier, A., Luo, Y., & Chen, D. 2016. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis. Agriculture, Ecosystems and Environment, 232, 283–289. https://doi.org/10.1016/j.agee.2016.08.019

Pohl, V., Gilmer, A., Hellebust, S., McGovern, E., Cassidy, J., Byers, V., McGillicuddy, E. J., Neeson, F., & O’Connor, D. J. 2022. Ammonia cycling and emerging secondary aerosols from arable agriculture: A European and Irish Perspective. Air, 1(1), 37–54. https://doi.org/10.3390/air1010003

Riaño, B., Molinuevo-Salces, B., Vanotti, M. B., & García-González, M. C. 2022. Effect of Operational Conditions on Ammonia Recovery from Simulated Livestock Wastewater Using Gas-Permeable Membrane Technology. Environments-MDPI, 9(6), 0–9. https://doi.org/10.3390/environments9060070

Riyanto, & Hayati, L. 2017. Treatment of ammonia in liquid hospital waste using activated carbon. AIP Conference Proceedings, 1911(December). https://doi.org/10.1063/1.5016023

Sara, U., Rahardja, D. P., Sonjaya, H., & Azhar, M. 2022. Changes in physiological condition of broiler chickens sprayed with water before transportation. Jurnal Ilmu Ternak Dan Veteriner, 27(2), 93–99. https://doi.org/10.14334/jitv.v27i2.2996

Seo, J. B., Jeon, S. Bin, Kim, J. Y., Lee, G. W., Jung, J. H., & Oh, K. J. 2012. Vaporization reduction characteristics of aqueous ammonia solutions by the addition of ethylene glycol, glycerol and glycine to the CO 2 absorption process. Journal of Environmental Sciences, 24(3), 494–498. https://doi.org/10.1016/S1001-0742(11)60797-3

Sihmawati, R. R. 2020. 4928-Article Text-13905-1-10-20200725. 340–351.

Szymula, A., Wlazło, Ł., Sasáková, N., Wnuk, W., & Nowakowicz-Dębek, B. 2021. The use of natural sorbents to reduce ammonia emissions from cattle faeces. Agronomy, 11(12), 1–9. https://doi.org/10.3390/agronomy11122543

Wei, F. X., Hu, X. F., Sa, R. N., Liu, F. Z., Li, S. Y., & Sun, Q. Y. 2014. Genetics and Molecular Research, 13(2), 3117–3127. https://doi.org/10.4238/2014.April.17.8

Yan, J., Wang, S., Wu, L., Li, S., Li, H., Wang, Y., Wu, J., Zhang, H., & Hong, Y. 2020. Long-term ammonia gas biofiltration through simultaneous nitrification, anammox and denitrification process with limited N2O emission and negligible leachate production. Journal of Cleaner Production, 270, 122406. https://doi.org/10.1016/j.jclepro.2020.122406

Zhou, S., Zhang, X., Liao, X., Wu, Y., Mi, J., & Wang, Y. 2019. Effect of different proportions of three microbial agents on ammonia mitigation during the composting of layer manure. Molecules, 24(13), 1–18. https://doi.org/10.3390/molecules24132513

Zubair, M., Wang, S., Zhang, P., Ye, J., Liang, J., Nabi, M., Zhou, Z., Tao, X., Chen, N., Sun, K., Xiao, J., & Cai, Y. 2020. Biological nutrient removal and recovery from solid and liquid livestock manure: Recent advance and perspective. Bioresource Technology, 301(October 2019), 122823. https://doi.org/10.1016/j.biortech.2020.122823

Published
2024-06-01
How to Cite
Sara, U., Azhar, M., Aulyani, T. L., & Faradila, S. (2024). Respon Pemberian Karbon Aktif Arang Sekam terhadap Pelepasan Gas Amonia pada Feses Ayam Ras Petelur. Jurnal Ilmu Dan Industri Peternakan , 10(1), 14-25. https://doi.org/10.24252/jiip.v10i1.36390
Section
Article
Abstract viewed = 216 times