POTENSI LACTOBACILLUS PLANTARUM SEBAGAI INTERVENSI PENATALAKSANAAN KANKER KOLOREKTAL BERBASIS MODIFIKASI MIKROBIOTA USUS
Abstract
Colorectal cancer is a cancer of the colon including the colon and rectum with symptoms such as blood in the stool, anemia, and abdominal pain. This is the third most common cancer worldwide and causes 30.017 cases in Indonesia on 2019. Current treatment of colorectal cancer includes the administration of chemotherapy, surgery, and radiotherapy. However, they are considerably expensive and have many side effects. Lactobacillus plantarum (L. plantarum) is known to have an anticancer effect by influencing carcinogenesis in cell proliferation, apoptosis, and stimulates anticancer immunity. This literature review aims to examine the potential of L. plantarum as an intervention in the management of colorectal cancer based on the modification of the gut microbiota. The writing method used is literature study by examining library sources from five research engines, namely Google Scholar, Pubmed, Plos ONE, Nature, and Sciencedirect. After going through the screening, 79 relevant sources were obtained which were then processed and compiled systematically. L. plantarum suppresses proliferation by inhibiting G1 phase in the cell cycle and targetting ErbB2 and ErbB3. In addition, L. plantarum induces cell death (apoptosis) by activating Bcl-2. These bacteria also stimulate Th1 and inhibit Th2 immune responses.
ABSTRAK
Kanker kolorektal merupakan kanker pada usus besar meliputi kolon dan rektum dengan beberapa gejala seperti darah dalam tinja, anemia, dan nyeri perut. Kanker ini menempati peringkat ketiga di dunia dan menyebabkan 30.017 kasus di Indonesia pada tahun 2019. Penanganan kanker kolorektal saat ini meliputi pemberian obat anti-kanker, pembedahan, dan radioterapi. Akan tetapi, penanganan saat ini dinilai mahal dan menimbulkan efek samping. Salah satu mikrobiota usus, yaitu Lactobacillus plantarum (L. plantarum) diketahui memiliki efek antikanker dengan memengaruhi karsinogenesis pada proliferasi sel, apoptosis, dan sebagai imunoterapi. Metode penulisan yang digunakan adalah studi literatur dengan mengkaji sumber kepustakaan dari lima research engine yaitu Google Scholar, Pubmed, Plos ONE, Nature, dan Sciencedirect. Setelah melalui skrining diperoleh 79 sumber relevan yang kemudian diolah dan disusun secara sistematis. L. plantarum menekan proliferasi melalui mekanisme penghentian fase G1 pada siklus sel dengan target reseptor ialah ErbB2 dan ErbB3. Selain itu, L. plantarum mampu menginduksi kematian sel (apoptosis) dengan mediasi Bcl-2. Bakteri ini juga berperan dalam imunoterapi dengan menstimulasi Th1 dan menghambat Th2 pada host immune system. Literature review ini bertujuan untuk mengkaji potensi L. plantarum sebagai intervensi penatalaksanaan kanker kolorektal berbasis modifikasi mikrobiota usus.
Downloads
References
American Cancer Society. (2017). Colorectal Cancer Facts & Figures 2017-2019 ; 1–40. Available from: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/colorectal-cancer-facts-and-figures/colorectal-cancer-facts-and-figures-2017-2019.pdf. Centers for Disease Control and Prevention. Behavioral Risk Factor Surveillance System, 2014. Public Use Data File. Colorectal Cancer Screening, 1–40. https://www.mendeley.com/viewer/?fileId=446a0f98-7242-86a5-07ff-be4c6c8cd11c&documentId=3b9629ab-fc85-3cb8-9607-7468ed4f76a7
Hulaima, I. S., & Carolia, N. (2016). OAINS sebagai Kemoprofilaksis Kanker Kolorektal NSAIDs as Colorectal Cancer Cemoprophylaxis. Medical Journal of Lampung University, 5, 54–58.
Campos, F. G. (2017). Colorectal cancer in young adults: A Difficult challenge. World Journal of Gastroenterology, 23(28), 5041–5044. https://doi.org/10.3748/wjg.v23.i28.5041
Globocan Observatory, W. (2019). Cancer Today - World. International Agency for Research on Cancer, 876, 2018–2019. https://gco.iarc.fr/today/data/factsheets/populations/900-world-fact-sheets.pdf
World Health Organization. (2019). Indonesia Source GLOBOCAN 2018. International Agency for Research on Cancer, 256, 1–2. http://gco.iarc.fr/
Brown, K. G. M., Solomon, M. J., Mahon, K., & O’Shannassy, S. (2019). Management of colorectal cancer. The BMJ, 366(August), 1–7. https://doi.org/10.1136/bmj.l4561
Zils, K., Wilhelm, M., Reeh, T., & Bielack, S. (2012). Bullous variant of acral erythema in a child after high-dose methotrexate. In Pediatric Hematology and Oncology (Vol. 29, Issue 4, pp. 378–379). https://doi.org/10.3109/08880018.2012.665982
Husna, T. (2018). Pengaruh Sitotoksik Ekstrak Etanol Daun Kemangi ( Ocimum sanctum ) Terhadap Sel MCF-7 dan Sel T47D. Publikasi Ilmiah, 1(18), 14–18.U. Rusli, “Inisiasi Menyusui Dini Plus Asi Ekslusif,” IVEY business journal. 2012.
Kementerian Kesehatan Republik indonesia. (2018). Keputusan Menteri Kesehatan Republik Indonesia Nomor HK.01.07/MENKES/406/2018.
Deng, R., Shi, L., Zhu, W., Wang, M., Guan, X., Yang, D., & Shen, B. (2019). Pharmacokinetics-based Dose Management of 5-Fluorouracil Clinical Research in Advanced Colorectal Cancer Treatment. Mini-Reviews in Medicinal Chemistry, 20(2), 161–167. https://doi.org/10.2174/1389557519666191011154923
Kahouli, I., Tomaro-Duchesneau, C., & Prakash, S. (2013). Probiotics in colorectal cancer (CRC) with emphasis on mechanisms of action and current perspectives. Journal of Medical Microbiology, 62(PART8), 1107–1123. https://doi.org/10.1099/jmm.0.048975-0
Satish Kumar, R., Kanmani, P., Yuvaraj, N., Paari, K. A., Pattukumar, V., Thirunavukkarasu, C., & Arul, V. (2012). Lactobacillus plantarum AS1 isolated from South Indian fermented food Kallappam suppress 1,2-dimethyl hydrazine (DMH)-induced colorectal cancer in male wistar rats. Applied Biochemistry and Biotechnology, 166(3), 620–631. https://doi.org/10.1007/s12010-011-9453-2
Zinatizadeh, N., Khalili, F., Fallah, P., Farid, M., Geravand, M., & Yaslianifard, S. (2018). Potential preventive effect of Lactobacillus acidophilus and Lactobacillus plantarum in patients with polyps or colorectal cancer. Arquivos de Gastroenterologia, 55(4), 407–411. https://doi.org/10.1590/s0004-2803.201800000-87
Behera, S. S., Ray, R. C., & Zdolec, N. (2018). Lactobacillus plantarum with Functional Properties: An Approach to Increase Safety and Shelf-Life of Fermented Foods. BioMed Research International, 2018. https://doi.org/10.1155/2018/9361614
Guidone, A., Zotta, T., Ross, R. P., Stanton, C., Rea, M. C., Parente, E., & Ricciardi, A. (2014). Functional properties of Lactobacillus plantarum strains: A multivariate screening study. LWT - Food Science and Technology, 56(1), 69–76. https://doi.org/10.1016/j.lwt.2013.10.036
Ray, R. C., & Didier, M. (2014). Microorganisms and Fermentation of Traditional Foods. CRC Press.
Ricci, A., Allende, A., Bolton, D., Chemaly, M., Davies, R., Girones, R., Koutsoumanis, K., Lindqvist, R., Nørrung, B., Robertson, L., Ru, G., Fernandez Escamez, P. S., Sanaa, M., Simmons, M., Skandamis, P., Snary, E., Speybroeck, N., Ter Kuile, B., Threlfall, J., … Herman, L. (2017). Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 6: suitability of taxonomic units notified to EFSA until March 2017. EFSA Journal, 15(7). https://doi.org/10.2903/j.efsa.2017.4884
Green, D. R., & Llambi, F. (2015). Cell death signaling. Cold Spring Harbor Perspectives in Biology, 7(12). https://doi.org/10.1101/cshperspect.a006080
Lee, H. A., Kim, H., Lee, K.-W., & Park, K.-Y. (2016). Dead Lactobacillus plantarum Stimulates and Skews Immune Responses toward T helper 1 and 17 Polarizations in RAW 264.7 Cells and Mouse Splenocytes. 26(0), 469–476.
Sharma, R., & Tiku, A. B. (2016). Emodin inhibits splenocyte proliferation and inflammation by modulating cytokine responses in a mouse model system. Journal of Immunotoxicology, 13(1), 20–26. https://doi.org/10.3109/1547691X.2014.995243
Ross, S. H., & Cantrell, D. A. (2018). Signaling and Function of Interleukin-2 in T Lymphocytes. Annual Review of Immunology, 36(1), 411–433. https://doi.org/10.1146/annurev-immunol-042617-053352
Mayo, B., & Flórez, A. B. (2020). Lactic Acid Bacteria: Lactobacillus spp.: Lactobacillus plantarum. In Reference Module in Food Science. Elsevier. https://doi.org/10.1016/b978-0-08-100596-5.00856-8
Evanovich, E., De Souza Mendonça Mattos, P. J., & Guerreiro, J. F. (2019). Comparative genomic analysis of lactobacillus plantarum: An overview. International Journal of Genomics, 2019. https://doi.org/10.1155/2019/4973214
Adnan, M. L. (2020). Potensi Kombinasi Bakteri Probiotik Lactobacillus reuteri dengan Sari Buah Kurma (Phoenix dactylifera) sebagai Terapi Penyakit Kanker Kolorektal. SCRIPTA SCORE Scientific Medical Journal, 1, 1–11.
Yamagishi, H., Kuroda, H., Imai, Y., & Hiraishi, H. (2016). Molecular pathogenesis of sporadic colorectal cancers. Chinese Journal of Cancer, 35(1), 1–8. https://doi.org/10.1186/s40880-015-0066-y
Murcia, O., Juárez, M., Hernández-Illán, E., Egoavil, C., Giner-Calabuig, M., Rodríguez-Soler, M., & Jover, R. (2016). Serrated colorectal cancer: Molecular classification, prognosis, and response to chemotherapy. World Journal of Gastroenterology, 22(13), 3516–3530. https://doi.org/10.3748/wjg.v22.i13.3516
Kim, S. Y., & Kim, T. Il. (2018). Serrated neoplasia pathway as an alternative route of colorectal cancer carcinogenesis. Intestinal Research, 16(3), 358. https://doi.org/10.5217/ir.2018.16.3.358
Erreni, M., Mantovani, A., & Allavena, P. (2011). Tumor-associated macrophages (TAM) and inflammation in colorectal cancer. Cancer Microenvironment, 4(2), 141–154. https://doi.org/10.1007/s12307-010-0052-5
Renuka, & Dahiya, D. K. (2017). The gut virome: A neglected actor in colon cancer pathogenesis. Future Microbiology, 12(15), 1345–1348. https://doi.org/10.2217/fmb-2017-0159
Shang, F. M., & Liu, H. L. (2018). Fusobacterium nucleatum and colorectal cancer: A review. World Journal of Gastrointestinal Oncology, 10(3), 71–81. https://doi.org/10.4251/wjgo.v10.i3.71
Sittipo, P., Lobionda, S., Choi, K., Sari, I. N., Kwon, H. Y., & Lee, Y. K. (2018). Toll-like receptor 2-mediated suppression of colorectal cancer pathogenesis by polysaccharide A from Bacteroides fragilis. Frontiers in Microbiology, 9(JUL), 1–11. https://doi.org/10.3389/fmicb.2018.01588
Ng, S. C., Wong, B. S. H. K., So, B. S. C. K., Lau, B. S. C. W., Leung, J. N. S., Tsoi, W. C., & Lee, C. K. (2019). Streptococcus bovis bacteraemia should be investigated for early detection of colorectal pathology. Hong Kong Medical Journal, 25(5), 414. https://doi.org/10.12809/hkmj198135
Thakur, B. K., Malaisé, Y., & Martin, A. (2019). Unveiling the Mutational Mechanism of the Bacterial Genotoxin Colibactin in Colorectal Cancer. Molecular Cell, 74(2), 227–229. https://doi.org/10.1016/j.molcel.2019.04.007
Kountouras, J., Papaefthymiou, A., Doulberis, M., & Polyzos, S. A. (2020). Influence of Helicobacter pylori-connected metabolic syndrome on non-alcoholic fatty liver disease and its related colorectal neoplasm high risk. Liver International, 40(2), 475–476. https://doi.org/10.1111/liv.14264
Pleguezuelos-Manzano, C., Puschhof, J., Huber, A. R., van Hoeck, A., Wood, H. M., Nomburg, J., Gurjao, C., Manders, F., Dalmasso, G., Stege, P. B., Paganelli, F. L., Geurts, M. H., Beumer, J., Mizutani, T., Miao, Y., van der Linden, R., van Elst, S., Garcia, K. C., Top, J., … Clevers, H. (2020). Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature, September 2019. https://doi.org/10.1038/s41586-020-2080-8
Tiptiri-Kourpeti, A., Spyridopoulou, K., Santarmaki, V., Aindelis, G., Tompoulidou, E., Lamprianidou, E. E., Saxami, G., Ypsilantis, P., Lampri, E. S., Simopoulos, C., Kotsianidis, I., Galanis, A., Kourkoutas, Y., Dimitrellou, D., & Chlichlia, K. (2016). Lactobacillus casei exerts anti-proliferative effects accompanied by apoptotic cell death and up-regulation of TRAIL in colon carcinoma cells. PLoS ONE, 11(2), 1–20. https://doi.org/10.1371/journal.pone.0147960
Saxami, G., Karapetsas, A., Lamprianidou, E., Kotsianidis, I., Chlichlia, A., Tassou, C., Zoumpourlis, V., & Galanis, A. (2016). Two potential probiotic lactobacillus strains isolated from olive microbiota exhibit adhesion and anti-proliferative effects in cancer cell lines. Journal of Functional Foods, 24, 461–471. https://doi.org/10.1016/j.jff.2016.04.036
Hiraishi, N., Kanmura, S., Oda, K., Arima, S., Kumagai, K., Mawatari, S., Tanoue, S., Sasaki, F., Hashimoto, S., & Ido, A. (2019). Extract of Lactobacillus plantarum strain 06CC2 induces JNK/p38 MAPK pathway-mediated apoptosis through endoplasmic reticulum stress in Caco2 colorectal cancer cells. Biochemistry and Biophysics Reports, 20(September). https://doi.org/10.1016/j.bbrep.2019.100691
Saxena, N., Katiyar, S. P., Liu, Y., Grover, A., Gao, R., Sundar, D., Kaul, S. C., & Wadhwa, R. (2013). Molecular interactions of Bcl-2 and Bcl-xL with mortalin: Identification and functional characterization. Bioscience Reports, 33(5). https://doi.org/10.1042/BSR20130034
Sun, M., Liu, W., Song, Y., Tuo, Y., Mu, G., & Ma, F. (2020). The Effects of Lactobacillus plantarum-12 Crude Exopolysaccharides on the Cell Proliferation and Apoptosis of Human Colon Cancer (HT-29) Cells. Probiotics and Antimicrobial Proteins. https://doi.org/10.1007/s12602-020-09699-8
Ruppert, S. M., Li, W., Zhang, G., Carlson, A. L., Limaye, A., Durum, S. K., & Khaled, A. R. (2012). The major isoforms of Bim contribute to distinct biological activities that govern the processes of autophagy and apoptosis in interleukin-7 dependent lymphocytes. Biochimica et Biophysica Acta - Molecular Cell Research, 1823(10), 1877–1893. https://doi.org/10.1016/j.bbamcr.2012.06.017
Chitnis, N., Pytel, D., Bobrovnikova-marjon, E., Pant, D., Maas, N., Frederick, B., Kushner, J. A., Chodosh, L. A., Koumenis, C., Fuchs, S. Y., & Diehl, J. A. (2013). expression in a PERK-dependent manner. 48(3), 353–364. https://doi.org/10.1016/j.molcel.2012.08.025.miR-211
Sano, R., & Reed, J. C. (2013). ER stress-induced cell death mechanisms. Biochicm Biophys Acta, 1833(12), 1–26. https://doi.org/10.1038/jid.2014.371
Shenoy, A. R., Kirschnek, S., & Häcker, G. (2014). IL-15 regulates Bcl-2 family members Bim and Mcl-1 through JAK/STAT and PI3K/AKT pathways in T cells. European Journal of Immunology, 44(8), 2500–2507. https://doi.org/10.1002/eji.201344238
Vega, G. G., Avilés-Salas, A., Chalapud, J. R., Martinez-Paniagua, M., Pelayo, R., Mayani, H., Hernandez-Pando, R., Martinez-Maza, O., Huerta-Yepez, S., Bonavida, B., & Vega, M. I. (2015). P38 MAPK expression and activation predicts failure of response to CHOP in patients with Diffuse Large B-Cell Lymphoma. BMC Cancer, 15(1), 1–12. https://doi.org/10.1186/s12885-015-1778-8
Yamamoto, N., Shoji, M., Hoshigami, H., Watanabe, K., Watanabe, K., Takatsuzu, T., Yasuda, S., Igoshi, K., & Kinoshita, H. (2019). Antioxidant capacity of soymilk yogurt and exopolysaccharides produced by lactic acid bacteria. Bioscience of Microbiota, Food and Health, 38(3), 97–104. https://doi.org/10.12938/bmfh.18-017
Bosch, M., Méndez, M., Pérez, M., Farran, A., Fuentes, M. C., & Cuñé, J. (2012). Lactobacillus plantarum CECT7315 y CECT7316 estimula la producción de inmunoglobulinas tras la vacunación contra la influenza en ancianos. Nutricion Hospitalaria, 27(2), 504–509. https://doi.org/10.3305/nh.2012.27.2.5519
Lee, H. A., Kim, H., Lee, K. W., & Park, K. Y. (2015). Dead Nano-Sized Lactobacillus plantarum Inhibits Azoxymethane/Dextran Sulfate Sodium-Induced Colon Cancer in Balb/c Mice. Journal of Medicinal Food, 18(12), 1400–1405. https://doi.org/10.1089/jmf.2015.3577
Biswas, S. K., Chittezhath, M., Shalova, I. N., & Lim, J. Y. (2012). Macrophage polarization and plasticity in health and disease. Immunol. Res., 53, 11–24.
Mills, C. (2012). M1 and M2 Macrophages: Oracles of Health and Disease. Crit. Rev. Immunol., 32, 463–488.
Habil, N., Al-Murrani, W., Beal, J., & Foey, A. D. (2011). Probiotic bacterial strains differentially modulate macrophage cytokine production in a strain-dependent and cell subset-specific manner. Benef. Microbes, 2, 283–293.
Christoffersen, T. E., Hult, L. T., Kuczkowska, K., Moe, K. M., Skeie, S., Lea, T., & Kleiveland, C. R. (2014). In vitro comparison of the effects of probiotic, commensal and pathogenic strains on macrophage polarization. Probiotics Antimicrob. Proteins, 6.
Hradicka, P., Beal, J., Kassayova, M., & Foey, A. (2020). A Novel Lactic Acid Bacteria Mixture : Macrophage-Targeted Prophylactic Intervention in Colorectal Cancer Management. Microorganisms, 8(3), 1–18.
Al Obeed, O. A., Alkhayal, K. A., Al Sheikh, A., Zubaidi, A. M., Vaali-Mohammed, M. A., Boushey, R., Mckerrow, J. H., & Abdulla, M. H. (2014). Increased expression of tumor necrosis factor-α is associated with advanced colorectal cancer stages. World J. Gastroenterol, 20, 390–396.
Zhao, P., & Zhang, Z. (2018). TNF-α promotes colon cancer cell migration and invasion by upregulating TROP-2. Oncol. Lett, 15, 3820–3827.
Mohania, D., Kansal, V. K., Sagwal, R., & Shah, D. (2013). Anticarcinogenic effect of probiotic Dahi and Piroxicam on DMH-induced colorectal carcinogenesis in Wistar rats. J. Cancer Ther. Pharmacol, 1, 8–24.
Hirota, S. A., Ng, J., Lueng, A., Khajah, M., Parhar, K., Li, Y., Lam, V., Potentier, M. S., Ng, K., & Bawa, M. (2011). NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis. Inflamm. Bowel Dis, 17, 1359–1372.
Mager, L. F., Wasmer, M. H., Rau, T. T., & Krebs, P. (2016). Cytokine-Induced Modulation of Colorectal Cancer. Front. Oncol, 6, 96.
Dennis, K. L., Blatner, N. R., Gounari, F., & Khazaie, K. (2013). Current status of interleukin-10 and regulatory T-cells in cancer. Current Opinion in Oncology, 25(6), 637–645. https://doi.org/10.1097/CCO.0000000000000006
Guthmiller, J. J., Graham, A. C., Zander, R. A., Pope, R. L., & Butler, N. S. (2017). Cutting Edge: IL-10 Is Essential for the Generation of Germinal Center B Cell Responses and Anti- Plasmodium Humoral Immunity . The Journal of Immunology, 198(2), 617–622. https://doi.org/10.4049/jimmunol.1601762
Prakoeswa, C. R. S., Herwanto, N., Prameswari, R., Astari, L., Sawitri, S., Hidayati, A. N., Indramaya, D. M., Kusumowidagdo, E. R., & Surono, I. S. (2017). Lactobacillus plantarum IS-10506 supplementation reduced SCORAD in children with atopic dermatitis. Beneficial Microbes, 8(5), 833–840. https://doi.org/10.3920/BM2017.0011
Ren, D., Wang, D., Liu, H., Shen, M., & Yu, H. (2019). Two strains of probiotic Lactobacillus enhance immune response and promote naive T cell polarization to Th1. Food and Agricultural Immunology, 30(1), 281–295. https://doi.org/10.1080/09540105.2019.1579785
Konstantinov, S. R., Kuipers, E. J., & Peppelenbosch, M. P. (2013). Functional genomic analyses of the gut microbiota for crc screening. Nature Reviews Gastroenterology and Hepatology, 10(12), 741–745. https://doi.org/10.1038/nrgastro.2013.178
Cicenia, A., Scirocco, A., Carabotti, M., Pallotta, L., Marignani, M., & Severi, C. (2014). Postbiotic activities of lactobacilli-derived factors. Journal of Clinical Gastroenterology, 48(December), S18–S22. https://doi.org/10.1097/MCG.0000000000000231
Hongyu Zhang, D. J. (2014). Manipulation of Microbiome, a Promising Therapy for Inflammatory Bowel Diseases. Journal of Clinical & Cellular Immunology, 05(04). https://doi.org/10.4172/2155-9899.1000234
Gosálbez, L., & Ramón, D. (2015). Probiotics in transition: Novel strategies. Trends in Biotechnology, 33(4), 195–196. https://doi.org/10.1016/j.tibtech.2015.01.006
Kaur, S., & Kaur, S. (2015). Bacteriocins as potential anticancer agents. Frontiers in Pharmacology, 6(NOV), 1–11. https://doi.org/10.3389/fphar.2015.00272
Tomás-Barberán, F. A., Selma, M. V., & Espín, J. C. (2016). Interactions of gut microbiota with dietary polyphenols and consequences to human health. Current Opinion in Clinical Nutrition and Metabolic Care, 19(6), 471–476. https://doi.org/10.1097/MCO.0000000000000314
Alam, M. N., Almoyad, M., & Huq, F. (2018). Polyphenols in Colorectal Cancer: Current State of Knowledge including Clinical Trials and Molecular Mechanism of Action. BioMed Research International, 2018. https://doi.org/10.1155/2018/4154185
Ding, S., Xu, S., Fang, J., & Jiang, H. (2020). The Protective Effect of Polyphenols for Colorectal Cancer. Frontiers in Immunology, 11(July), 1–9. https://doi.org/10.3389/fimmu.2020.01407
Copyright (c) 2021 Jurnal Kesehatan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.